IEEE TRANSACTIONS ON GAMES, VOL. 11, NO. 1, MARCH 2019

69

From Mechanics to Meaning

Adam Summerville =, Chris Martens, Sarah Harmon

, Michael Mateas, Joseph Osborn

, Noah Wardrip-Fruin,

and Arnav Jhala

Abstract—While generative approaches to game design offer
great promise, systems can only reliably generate what they can
‘“understand,” which is often represented in a limited, implicit form
in hand-crafted evaluation functions or constructive rules. Pro-
ceduralist readings, a semiformal approach for interpreting the
meaning of a game based on its underlying processes and interac-
tions in conjunction with aesthetic and cultural cues, offer a novel,
systematic approach to game understanding. We formalize pro-
ceduralist argumentation as a logic program that performs static
reasoning over game specifications to derive higher level meanings,
as part of Gemini, a bidirectional game analysis and generation sys-
tem.

Index Terms—Answer set programming (ASP), automated game
analysis, proceduralist readings.

I. INTRODUCTION

ROCEDURALLY generating components of games has
P the ability to create rich play environments that adapt in
real time to a player’s choices and behavior, paving the way
for more personalized, and thus more impactful, conveyance
of story and theme. However, focusing solely on visual stimuli
and surface characteristics of games as the target for generativ-
ity has limitations. Perhaps the most potent messages in games
are communicated through mechanics, i.e., the rules and con-
trol mechanisms that mediate interaction between the player’s
actions and the game state.

Consider as an example Lucas Pope’s critically acclaimed
game Papers, Please [1] in which the player serves as an im-
migration officer who must decide who can cross the border
to a fictional country. The player must balance success at the
job with moral questions around civil disobedience toward an
increasingly menacing government. The game communicates
deep political themes by asking the player to perform the me-
chanics of border control within a context of reward and pun-
ishment reflecting those themes.

Similarly, Paolo Pedercini’s Unmanned [2] portrays a se-
quence of short playable vignettes in the life of a soldier

Manuscript received March 20, 2017; revised September 10, 2017; accepted
September 30, 2017. Date of publication October 23, 2017; date of current ver-
sion March 15, 2019. This work was supported by the National Science Foun-
dation under Grant IIS-1409992. (Corresponding author: Adam Summerville.)

A. Summerville, S. Harmon, M. Mateas, J. Osborn, and N. Wardrip-Fruin
are with the Department of Computational Media, University of Califor-
nia, Santa Cruz, Santa Cruz, CA 95064 USA (e-mail: asummerv@ucsc.edu;
smharmon@ucsc.edu; michaelm@soe.ucsc.edu; jcosborn@ucsc.edu; nwf@
soe.ucsc.edu).

C. Martens and A. Jhala are with the Department of Computer Sci-
ence, North Carolina State University, Raleigh, NC 27695 USA (e-mail:
martens @csc.ncsu.edu; ahjhala@ncsu.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCIAIG.2017.2765599

..what a delight.

...what a tedious duty.

..what a challenge.

Make your choice...

Fig. 1. Screenshot from Unmanned.

engaged in drone warfare wrestling with his masculinity. Each
vignette contains some textual narrative delivery paired with
a mouse-controlled mini-game. For example, one scene (see
Fig. 1) contains a branching text-based monologue of the player
character’s thoughts while shaving, together with a mini-game
in which the player’s control of a razor determines how many
cuts he gets on his face (which persist throughout the game). In
this case, the mechanics of the mini-game serve as an enactment
of the character’s grooming routine and support formation of an
emotional connection (whether frustrated or reflective) between
player and fictional character.

Games studies scholars have examined these and other games,
arguing for the power of mechanics to create meaning: Bo-
gost [3] demonstrates how persuasion may be realized through
mechanics (through so-called procedural rhetoric), Delwiche [4]
argues that mechanics can shape player attitude and behavior,
and Zagal [5] illustrates how they can encourage players to re-
flect on ethical issues. This power motivates us to investigate,
from a computational perspective, how mechanics operate to
communicate meaning. An answer to this question would be a
step along the path of generating meaningful games, which has
the potential to shape an interactive experience in unprecedented
ways.

The problem of full video game generation has attracted wide
interest in the last decade [6]—[8] for a variety of reasons, one
being simply the challenge of autonomously designing in a
creative space. However, due to the infancy and difficulty of
the game generation problem, most of these have operated on a
limited subset of the larger problem, e.g., 2-D movement-based
games with a finite set of possible behaviors upon collision or
user input. Most of these approaches (save Game-o-Matic) have
ignored the meaning of the games, as might be inferred by a
player or game critic.

To be able to generate games with this kind of mean-
ing, we need a way of establishing the relationship between

2475-1502 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-1747-0861
https://orcid.org/0000-0003-0209-3055
https://orcid.org/0000-0003-0025-9525

70

meaning and mechanics. The mechanics, dynamics, and aes-
thetics (MDA) framework of Hunicke et al. [9] provides a start-
ing point, defining mechanics as “the various actions, behaviors
and control mechanisms afforded to the player within a game
context,” dynamics as “the run-time behavior of the mechanics
acting on player inputs and each others’ outputs over time,” and
aesthetics as “the desirable emotional responses evoked in the
player, when she interacts with the game system.” They posit
that these components of games form a hierarchy, with me-
chanics serving as the “axioms” at the bottom specifying the
authored interaction rules of a game, dynamics emerging from
mechanics through interaction with the player, and aesthetics
emerging from dynamics as well as meaning inferred by the
player on the basis of audio—visual stimuli.

To understand the meaning of a game requires accounting
for each of these mechanisms and where they interact. Treanor
et al. proposed proceduralist readings, a process of deduction
that allows one to discuss dynamics, aesthetics, and higher level
meanings on the basis of a game’s mechanics and cultural knowl-
edge about the significance of sensory cues, such as colors and
icons [10]. They refer to the result of this process as a meaning
derivation, a logical argument for any given interpretation of
what a game communicates.

In this paper, we present the analysis half of Gemini, a bidi-
rectional game analysis/generation system. The analysis half is
an operationalization of proceduralist readings that enables a
computational understanding of the relationship between me-
chanics and meaning. We have encoded the style of reasoning
introduced by proceduralist readings as a logic program, which
can autonomously derive higher level knowledge from lower
level knowledge. As a starting point, we investigate deriving
dynamics as emergent consequences of mechanics; then, by
incorporating cultural and phenomenological knowledge, we
derive aesthetics from the inferred dynamics. This information
is computed using answer set programming (ASP) to statically
derive all of these properties without need for simulation. In
this paper, we do not demonstrate the generative portion of
Gemini as the analysis portion requires significant detail to dis-
cuss sufficiently.

The result of this paper is a framework for deriving game
meaning from mechanics and information about audiovisual
representation, so as to support the generative capabilities
of Gemini. The resulting analyses demonstrate a level of
knowledge and reasoning beyond systems with prescribed
meaning [11].

A. Related Work

The most closely related work is Game-o-Matic [12], which
similarly combines cultural knowledge with mechanics to gen-
erate playable games from meaning descriptions. It makes use of
“microrhetorics” to represent primitive mechanics paired with
player interpretations of game entity verbs (e.g., support, eat,
destroy, etc.). This paper generalizes from Game-o-Matic in a
number of ways. First, Game-o-Matic only represents and rea-
sons about game rules related to movement, collision detection,
and a minimal resource representation (objects can grow and

IEEE TRANSACTIONS ON GAMES, VOL. 11, NO. 1, MARCH 2019

shrink), while this paper captures a broader range of potential
mechanics (notably, we develop a theory of resource manage-
ment mechanics much more deeply). Second, Game-o-Matic’s
notion of game meaning is restricted primarily to single-layered
mappings between mechanics and represented game verbs, with
no explicit reasoning related to game dynamics. In contrast,
this paper operationalizes meaning derivations to capture both
broader and more abstract notions of dynamics and game mean-
ing. Finally, Game-o-Matic is a pipelined architecture that can
move from a game specification in the form of game entities
with desired verb relationships to a game, while this paper uses
a constraint satisfaction framework to be able to move from
desired dynamics and meanings to games, or games to inferred
dynamics and meanings, in a single framework. This paper fo-
cuses on the latter, which can be considered a generalized form
of “reverse Game-o-Matic.”

There is other work in game generation which also deals with
inferring relationships between formalized games and mean-
ings or constraints (the inputs to the generator). Nelson and
Mateas [7] incorporate meaning through WordNet and Con-
ceptNet and characterizes games in terms of patterns found in
their generation target, WarioWare games, such as avoid and ac-
quire. In contrast, our system can express a broader, finer grained
space of mechanics, and express meaning in more systematic
terms. The Variations Forever [13] system similarly uses ASP to
search a fine-grained space of possible mechanics but does not
make any attempt to relate generation to high-level conceptual
meaning, nor is the generative space broad enough to express re-
source management or other mechanics not based on movement
and collision of entities. Finally, the Angelina system has gen-
erated games based on theme in the context of the Ludum Dare
game jam [14]. Angelina uses a data-driven approach based on
word association databases and does not systematically relate
mechanics to meaning.

Zook and Riedl used ASP to generate mechanics in a form
similar to the approach proposed in this paper [15]. That work
defined a mechanic as a set of preconditions and effects, but was
limited to “avatar-centric”” mechanics, and no effort was chosen
to find the underlying meaning/semantics of the mechanics, sim-
ply playability constraints. Cook and Colton [16] used a process
known as Google milking to find semantically meaningful pair-
ings to map onto existing mechanical constructs (e.g., to find
an item to heal, they searched for “Why do kids eat” and took
the top result “boogers” to find an item to heal the player “kid”
character), but this work focused on mapping semantics to pre-
existing mechanics. Cook and Colton also presented work on
possible ways of linking code and meaning [17], but this was
never extended to a working system. A distinction between our
approach and their proposed one is that ours does not rely on
semantically meaningful variable names while theirs does (e.g.,
for them a boolean variable named “alive” is important, while
for us it is the act of entity deletion that is important no matter
the names of the variables involved).

Another topic of research for general game playing (GGP)
systems is reasoning over the structures of a game. The earliest
work [18] examines the syntactic structures of the first-order
logic program that defines a GGP game to learn underlying

SUMMERVILLE et al.: FROM MECHANICS TO MEANING

game structures. This system could answer very basic ques-
tions, e.g., “Is this a successor function?” or “Is there a board?”
Later Schiffel and Thielscher [19] extended this work to be able
to determine if something represents a quantity (such as number
of points). Due to the fact that the players are given no type
information and very limited semantic information for the logic
programs that make up a GGP game, even these basic tasks are
arduous—determining if there are numbers or a board has to be
teased out from the syntax. Our formalism lends itself to discov-
ering higher level structures due to the fully specified semantics.

Game researchers are also interested in developing models to
describe how players learn. One such model is a skill chain: A
directed graph that identifies initial and gained skills over the
course of a game, and the paths that lead players to develop (or
reject) these skills [20]. Through the construction of a skill chain
diagram, designers can better understand how players navigate a
game experience based on what they have learned at each step in
the path. Furthermore, they can identify potential mechanisms
for player affectual impacts, such as pleasure and burnout. The
pursuit of a formal procedure for game meaning derivation may
lead to the automation of these types of analyses.

II. APPROACH

Treanor et al., in introducing “proceduralist readings,’
demonstrate through example the process of constructing mean-
ing derivations, or bodies of knowledge about a game that are
built up in a proof-tree-like structure from axiomatic facts, such
as mechanics and thematic elements [10]. Proceduralist read-
ings provide a solid foundation for the human activity of game
understanding, in which a reader thinks critically about which
pieces of the game offer which interpretive affordances. (See
Fig. 2 for a depiction of how meaning is built.) We build on
this work by formalizing this reasoning as a computer program
such that we can autonomously derive high-level knowledge,
including culturally informed critical readings, from an input
game description.

To do this, we define a formal language for describing me-
chanics (e.g., “the cursor exerts a force on particles”), atomic
pieces of cultural knowledge (e.g., “the color green represents
life’), and communication strategies (e.g., “a meter display com-
municates the state of a resource”). From these specified knowl-
edge components, the task of game understanding is to derive
higher order knowledge like “the ball moves perpetually back
and forth unless the player intervenes,” an example of deriv-
ing a dynamic from mechanics in the language of the MDA
framework.

We note that the cultural knowledge assumes a specific cul-
tural viewpoint (e.g., green may represent life and nature in
the U.S., independence in Mexico, and infidelity in China) and
may vary between players (e.g., some United States players may
more strongly associate green with envy). Due to the modular
nature of our approach, one can specify many different cultural
contexts and swap them to see how different cultures and players
might perceive the same game. For the purposes of this paper,
we codified a U.S., westernized cultural viewpoint representing
the assumptions we perceived in our chosen examples.

71

Meaning

Dynamics Aesthetics Theme
/ _/\ ——

N\ b
Mechanics —{ Definitions “ Culture

Fig. 2. Green nodes represent definitions (entities, resources, and other vari-
ables) and mechanics in the game. Blue nodes are the cultural context. Orange
nodes are the derived dynamics, aesthetics, and meaning. Arrows represent
the directions information can flow in the process of a proceduralist reading
(e.g., Mechanics and Definitions inform Dynamics which can then inform the
Aesthetics or Meaning of a game).

New Idea Producer
Cursor
Consumer /
\\)
Vectorialist

T

Fig. 3. Screenshot of the Free Culture Game.

A. Explanatory Example

One example carefully studied by Treanor et al. is The Free
Culture Game, in which “new ideas” are represented as floating
particles that must be herded toward producers in the creative
commons to keep them inspired (creating new ideas) and away
from the vectorialist, who takes ideas out of the creative com-
mons to commodify them for consumers. The player exerts
an indirect force via the mouse cursor on new ideas. Several
proceduralist readings are extrapolated from these mechanics
together with the game’s interpretive affordances, such as the
colors selected for producers versus consumers (green versus
grey) and the robotic and malicious audio—visual character of
the vectorialist. An annotated screenshot can be seen in Fig. 3.

For example, they read the following meanings from the
game.

1) The player must navigate the cursor between the vectori-

alist and new ideas to prevent commodification.

2) The vectorialist is an evil adversary who does not care

about the happiness of people.

72

(Reading 3) The player will use the cursor to
push new ideas towards the producers

—

(Reading 2) The player wants the (Mechanic 2) Player exerts
producer and new ideas to collide indirect force on new ideas

/\

[(Reading 1) The goal is to] [(Mechanic 6) When a producer collides]

maintain ideas absorbed with a new idea, ideas absorbed increases.

(Goal) The goal is to (Mechanic 8) When the ideas absorbed by a producer go
maintain producers. below a threshold, the producers convert into consumers.

Fig. 4. Color-coded example meaning derivation of an aspect of the aesthetics
of the Free Culture Game. Green nodes represent concrete pieces of game
Mechanics and stated Goals that are used as the building blocks for inference
chains. Orange nodes represent Readings, i.e., dynamics such as (R1) are derived
from these mechanics and in turn used to derive (also orange) aesthetics, such
as (R2) and (R3).

They derive these meanings from a number of implicit rules,
which they call dynamics. We read these as equivalent to the
constitutive mechanics of [21], though we will use the term dy-
namics here to avoid confusion. For example, the first inference
shown on the path to deriving the first reading is the following.

Because producers need new ideas to collide with them in
order not to turn into consumers, the player’s goal is to maintain
as many producers as possible, and the player can exert a force on
the new ideas, the player will push new ideas towards producers.
(Reading 1).

This derivation can be made more explicit by identifying the
base assumptions that can be directly observed about the game
(e.g., Goals and Mechanics), then building the argument in a
tree structure:

Base assumptions:

(G) The goal is to maintain producers.

(M8) When the ideas absorbed by a producer go below a
threshold, the producers convert into consumers.
When a producer collides with a new idea, the ideas
absorbed increases.

(M2) The cursor pushes new ideas.
Meaning derivation:

(M6)

By
(G), (M) (R1). The goal is to maintain ideas
absorbed.
(M6), (R1) (R2). The player wants the producer
and new ideas to collide.
(M2), (R2) (R3). The player will use the cursor

to push new ideas toward the
producers.

Characterizing game analysis as a process of constructing
these reasoning structures constitutes an initial step toward a
computable formalism. To operationalize this process, we need
to understand the implicit inference rules that govern why each
proof step is valid. For example, to state that (R1) follows from
(G) and (M8) makes use of the reasoning that we do as humans
about the relationship between goals and circumstances that
defeat those goals (see Fig. 4).

IEEE TRANSACTIONS ON GAMES, VOL. 11, NO. 1, MARCH 2019

Some other game reasoning principles that we must codify
to fully formalize the Free Culture Game meaning derivation
include the following.

1) If the player’s goal is G and action A accomplishes G, the

player will do action A.
2) Pushing an entity £ with an entity P causes E to move
away from P.

3) An entity moving away from something might move to-

ward another entity.

4) When E moves toward X, E and X might collide.

This kind of reasoning is powerfully general in that we can
expect to apply it to many games without having to encode
game-specific interpretation knowledge. It includes knowledge
about player goals and control, causal relationships between
game events, and knowledge about state change phenomena,
such as spatial and physical relationships, increase and decrease
of resources, the passage of time, and win and lose conditions.
In other words, this kind of game literacy must be made explicit
in order to perform proceduralist readings.

Our proposed system for mechanizing proceduralist argu-
ments thus consists of two pieces: 1) for each individual game,
a specification of the game’s mechanics and communicative af-
fordances (hereafter “the specification™), and 2) a collection of
literacy rules like the above for reasoning over specifications
(hereafter “the reasoning principles”). We encode both of these
knowledge sources as an ASP system, i.e., as a logic program
interpretable by an answer set solver.

This paper describes the reasoning principles, a body of rules
that enable deriving higher level meanings from game spec-
ifications, together with several example game specifications
written in Cygnus, our domain-specific language for game spec-
ifications. We describe these efforts by example in Sections III
and IV.

III. GAME SPECIFICATION

We describe game mechanics as a collection of named out-
comes that have preconditions and results, similar to linear logic
based game specification in Ceptre [22] or the sensors and ac-
tors of Kodu [23]. To standardize our game descriptions in such
a way as to describe a broad range of genres, but apply the
same reasoning principles to all specifications, we developed
the Cygnus game specification language, which includes the
aforementioned outcomes as well as notions of entity, resource,
timer, and player controls. Using this formalism, we can de-
scribe the mechanics of The Free Culture Game as well as other
classic arcade-style games.

A nonexhaustive list of possible preconditions includes the
following:

1) comparisons of resources: e.g., R; >= 0;

2) Collision detection: overlaps(E, E»);

3) geometric proximity: near(E;, E,);

4) timers elapsing: timer _elapsed(T));

5) player input: button_press(mouse, held).

A nonexhaustive list of possible results includes the
following:

1) resource modification: R+ = 2;

SUMMERVILLE et al.: FROM MECHANICS TO MEANING

2) entity movement: e.g., move(E, north); move_toward
(E1, E2);

3) entity creation/deletion: e.g., delete(E1);

4) game mode changes: mode_change(game_loss).

To carry out automated inquiry about a game, the author
creates a specification of the game’s mechanics in Cygnus, then
runs the answer set solver on it in conjunction with the reasoning
principles, resulting in a stable model (collection of logical facts)
representing derived knowledge about the game. Here, we give
one example in depth to illustrate the approach, and we later
summarize further efforts for breadth.

A. Free Culture Game

First, we describe our encoding of the Free Culture Game’s
mechanics in Cygnus (which we directly embed as ASP predi-
cates). One such mechanic is The vectorialist pulls in new ideas,
which we describe as an outcome with a single precondition, the
vectorialist is near a new idea, and a single effect, the new idea
moves toward the vectorialist. In ASP predicate notation, we
assign this outcome the name pull_idea with the following
syntax:

precondition (
near (vectorialist,
pull_idea) .

result (pull_idea,
move_toward (new_idea,

new_idea) ,

vectorial-
ist)).

The pull_idea token is simply an identifier to con-
nect the precondition to the result, while the near (-) and
move_toward (-, —) predicate designate specific meanings
as preconditions and results in the Cygnus language.

We encode the rest of the game in a similar fashion; we will
describe this in line with informal descriptions of preconditions
and results. The interested reader may refer to Fig. 5 for the
encoding of these rules as ASP predicates. For example, the
following three mechanics establish the relationships between
producers, new ideas, and the player.

1) Mechanic 1: “Producers make new ideas.” Precondition: a
slow repeating timer goes off. Result: a new idea is added
to the game in a random location.

2) Mechanic 2: “The cursor exerts force on ideas.” Precon-
dition: the cursor is near a new idea. Result: the new idea
moves away from the cursor.

3) Mechanic 6: “Collision between a new idea and a producer
increases ideas absorbed for that producer.” Precondition:
a new idea and a producer overlap. Result: the producer’s
“ideas absorbed” resource increases, which is reflected by
the producer shifting in color from grey to green.

In addition to specifying mechanics, we may also supply facts
about the initial state of the game and the game’s goal, such as
The player’s goal is to prevent producers from converting into
consumers. See Fig. 6 for these auxiliary clauses.

Al code is available at: https://github.com/LudoNarrative/ClimateChange/
tree/master/GameGenerator/Justifications

73

IV. REASONING PRINCIPLES

Next, we need to introduce rules for deriving consequences
of game specifications, i.e., ways of deriving dynamics, aesthet-
ics, and meanings from mechanics and cultural assumptions.
We refer to this body of knowledge as the reasoning principles:
Generic knowledge about games that can be composed through
logical inference. While the principles of first-order logic al-
low us to instantiate generalizations with specifics and apply
implications to known premises, exactly the content of those
generalizations and implications remains a contingent body of
knowledge to be authored. It requires logical modeling of game
phenomena and their relationship in terms of the causal phe-
nomena we wish to model.

For example, Reading 3—*“The player will use the cursor
to push new ideas toward the producers”—will need to be
derivable as a formal logical statement of the form “the player
will create condition C to cause some outcome O to occur.” To
derive this reading, we informally reasoned that it was because
“the player wants the producer and new ideas to collide” and
“the player exerts force on new ideas.” More generically, these
facts can be considered instances of “the player wants outcome
O to occur” and “the player has control over condition C,
which causes O.” By generalizing the inference rule in this
way, we arrive at our first reasoning principle: If the player can
create condition C, condition C enables outcome O, and the
outcome O is favorable, then the player will create condition
C. In logic program notation, we write this rule as follows.

playerWillDo (Cond, Outcome)
:- playerCreatesCondition (Cond),
conditionEnables (Cond, Out-
come) ,

outcomeFavorable (Outcome) .

The first line is the head of the rule, or the conclusion of the
implication, where the following comma-separated lines are the
conjoined premises. Each token beginning with a capital letter is
a logic variable, implicitly universally quantified on the outside
of the rule. In the rest of this section, we will explain the rules
in prose, but each rule has a corresponding formal encoding in
the logic program.

This rule is an example of one kind of game reasoning, namely
player modeling—it is a prediction about the player’s actions
on the basis of the game’s goals and affordances provided to
the player. We identify player modeling as one of several kinds
of reasoning principles employed by human experts, such as
Treanor et al.’s Free Culture Game analysis [10]; we consider
player modeling part of a more general category of agency
ascription. In addition to agency ascription, we also group rules
under the categories of operational semantics—the emergent
causal behavior of mechanics—and meaning ascription—the
assignment of properties like positive and negative valence to
game objects.

74

IEEE TRANSACTIONS ON GAMES, VOL. 11, NO. 1, MARCH 2019

%% (Mechanic 1): Producers make new ideas
precondition(slow_timeout, gen_idea).
result(gen_idea, add(new_idea)).

:— physicsLogic(Entity, pushing).

:— physicsLogic(Entity, pulling).

result(commodify, delete(new_idea)).
result (commodify, increase(old_ideas, med)).
% ideasAbsorbed.

result(learn, increase(ideasAbsorbed, mid)).
result(learn, set_color(producer,green)).

%% (Mechanic 7):
precondition(tick, forget).

result(tick, decrease(ideasAbsorbed, low)).
result(tick, set_color(producer,gray)).

result(convert_producer, delete(producer)).
result(convert_producer, add(consumer)).

result (convert_consumer, delete(consumer)).
result (convert_consumer, add(producer)).

precondition(gt(old_ideas, 0), feed_consumer).

precondition(tick, forget_old).

%% (Mechanic 2): The cursor exerts force on ideas.
precondition(near(cursor, new_idea), push_idea(cursor)).
result(push_idea(Entity), move_away(new_idea, Entity))

%% (Mechanic 3): The vectorialist moves toward groups of new ideas.
precondition(far(vectorialist, new_idea), scan).
result(scan, move_toward(vectorialist, new_idea)).

%% (Mechanic 4): The vectorialist pulls in new ideas.

precondition(near(vectorialist, new_idea), pull_idea(vectorialist)).
result(pull_idea(Entity), move_toward(new_idea, Entity))

%% (Mechanic 5): Collision between new ideas and vectorialist
YA kills new idea & increases old ideas.
precondition(collide(new_idea, vectorialist), commodify).

%% (Mechanic 6): Collision between new idea & producer increases

precondition(collide(new_idea, producer), learn).

ideasAbsorbed decreases with time.

%% (Mechanic 8): If ideasAbsorbed goes to 0, producer turns into consumer.
precondition(le(ideasAbsorbed, 0), convert_producer) .

%% (Mechanic 9) (only referred to later than 1st example):
%% If ideasConsumed goes to O, consumer turns into producer.
precondition(le(ideasConsumed, 0), convert_consumer) .

%% (Mechanic 10) (only referred to later than 1st example):
%% Vectorialist provides consumers with old_ideas

precondition(near(vectorialist, consumer), feed_consumer) .
result(feed_consumer, decrease(old_ideas, low)).
result(feed_consumer, increase(ideasConsumed, low)).

result (forget_old, decrease(ideasConsumed, low)).

Fig. 5.

A. Operational Semantics

We establish the semantics of our game representation lan-
guage by relating effects to how they may influence conditions.
For example, two entities moving toward each other may cause
the “collide” condition between them, and increasing a resource
may eventually cause it to satisfy the condition of being over a
certain threshold. We formalize this relationship between results
enabling conditions as a series of rules, including the following.

1) Entities moving toward each other enables their collision.

2) Entities moving away from one another enables their col-

lision with other entities.

Formal specification of the mechanics of the Free Culture Game in Cygnus.

3) Increasing (decreasing) a resource enables a high (low)

threshold to be met.

4) If an outcome O adds an entity £ and outcome O’ requires

E, then O enables O’.
5) If an outcome O removes an entity E needed by O’, then
O hinders O'.

In this regard, the game’s specific rules and the general rea-
soning principles form two halves of a game’s meaning: the
game specification connects conditions to results (through ex-
plicit mechanics), and the reasoning principles connect results
to conditions (through a semantic, approximated interpretation
of each result).

SUMMERVILLE et al.: FROM MECHANICS TO MEANING

%% Initializations
initialize(set_to(ideasAbsorbed,10)).
initialize(set_sprite(producer, person)).
initialize(set_color(producer,green)).
initialize(set_sprite(consumer, person)).
initialize(set_color(consumer,gray)).
initialize(set_sprite(vectorialist,
evil_robot)).
initialize(set_color(vectorialist,black)).

%% (Goal) The goal is to prevent producers
%% turning into consumers.
goal (prevent (convert_producer)) .

Fig. 6. Auxiliary clauses for the Free Culture Game.

We also create a transitive closure of outcome enablement by
including the following recursive rule.

1) If O, enables O, enables O3, then O, enables O3.

This rule allows us to reason about not just immediate cause-
and-effect between mechanics but also indirect causality.

B. Meaning Ascription

To derive high-level notions like an outcome is favorable from
low-level models of game world domain knowledge, we intro-
duce a number of rules for meaning ascription. For example,
we assign positive and negative valence (i.e., “good” or “bad”)
to things like resources, results, and outcomes on the basis of
player goals and operational inference about how various me-
chanics, resources, and entities affect (enable or hinder) those
goals.

As an example, the meaning derivation in Section II found a
derived goal, maintaining “ideas absorbed,” from the stated goal
(prevent producers from converting) and one of the mechanics.
We use a reasoning principle that states; if the goal is to prevent
an outcome O that has a a low threshold on resource R as a
precondition, then maintaining R is a goal. With O instantiated
as the rule for producers converting, R maps to the “ideas ab-
sorbed” resource and we deduce that maintaining that resource
is a goal.

Some instances are assumed to be axiomatic (ending the game
in loss is axiomatically bad), while other valences are derived
from this static analysis information. These rules include things
like the following.

1) Winning (losing) is a good (bad) result.

2) Ifaresource R is good (bad), increasing R is a good (bad)

result.

We also include rules that define certain phenomena in terms
of emergent game dynamics, such as notions of positive feed-
back loops, bootstrapping, and investment as properties of re-
source management games. These rules are used to reason about
games, such as Cookie Clicker, discussed in the next section.

C. Agency Ascription

To produce readings, such as the vectorialist is an antagonist
for the Free Culture Game, we need to codify the kind of an-
thropomorphization commonly understood to be carried out by

75

humans observing autonomous behavior. Thus, we introduce a
notion of influence over an outcome by human players as well
as autonomous agent (formally, entities). For instance:

1) if anentity E being near (or overlapping or colliding with)
another entity E’ is a precondition for outcome O, O isnot
controlled by the player, and some outcome not controlled
by the player results in E’s movement, then we say that
E influences O;

2) if a timer’s elapse associated with E is a precondition for
O, then we also say that £ influences O;

3) if a control event is a precondition for O, then the player
influences O. If there are no other preconditions, then the
player controls O;

4) if an entity influences an outcome O with a favorable
(unfavorable) result, then the entity is an ally (antagonist).

V. RESULTS

We pass our reasoning principles and game specification to
an answer set solver, specifically Clingo [24]. The solver deter-
mines a set of facts (an answer set) that is consistent and com-
plete with respect to all axioms and rules provided. This will
include all facts derivable from the reasoning principles about
the specified game mechanics. We note that, as in the original
work by Treanor et al., Gemini supports multiple readings for a
single game.

The answer set generated when given the game specification
for the Free Culture Game includes the following facts.

The goal is to maintain ideasAbsorbed. The outcome
forget affects ideasAbsorbed negatively, and the out-
come learn affects it positively, meaning that learn is a fa-
vorable outcome. The player has agency over the cursor and uses
the cursor to influence the outcome push_idea (cursor),
which in turn enables the outcome 1earn by pushing ideas to-
ward the producers. As such, 1earn is a favorable outcome that
the player has indirect control over via pushing ideas with the
cursor, so the player will place the cursor near new_ideas to
try to enact the 1earn outcome. A graphical representation of
these inferred properties along with the rules that were required
to derive these can be seen in Fig. 7. Furthermore, collision
with the vectorialist deletes new_ideas (which we la-
bel destroys) that are required for a player to influence the
outcome push_idea (cursor) . An entity not under the con-
trol of the player that destroys an entity required for the player’s
progress is an antagonist (although not the only possible
form of antagonism representable), thus the vectorialist
is an antagonist. Cultural assumptions about colors (that green
represents life and grey represents a lack of life) lead to the
interpretation that the outcome labeled as forget leads to a
worse outcome for the producer than either its initial state or its
state as a result of the outcome learn.’

20f course we do not stipulate that there is only one body of objectively
correct cultural knowledge—we could just as easily represent other cultural
assumptions and observe differences in interpretation, just as two human critics
with different cultural backgrounds may perceive a game’s meaning differently.

76

IEEE TRANSACTIONS ON GAMES, VOL. 11, NO. 1, MARCH 2019

{ (Reading 3)

playerWillDo(near(cursor,new_idea),push_idea(cursor))]

(Rule 7)

playerWillDo(Cond, Outcome) :-
playerCreatesCondition(Cond),
conditionEnables(Cond, Outcome),
outcomeFavorable(Outcome).

e T

(Reading 2d)
playerCreatesCondition(collide(new_idea,producer)).

(Reading 2a) (Reading 2b)
outcomeFavorable(learn) conditionEnables(near(cursor,new_idea),push_idea(cursor)).

i

outcomeFavorable(Outcome) :-
outcomeAffects(Resource, Outcome, positive),

(Rule 3) ‘
good(Resource) .

(Rule 4)
conditionEnables(Cond, Outcome) :-
precondition(Cond,Outcome).

) |

playerCreatesCondition(C) :-
spatial_condition(C, Entity, Other),
playerAgency(Entity),
precondition(near(Entity, Other), Outcome).

(Reading 1a)
good(ideasAbsorbed)

(Reading 2c)
playerAgency(new_idea).

T

(Rule 2) (Mechanic 6)
good(Resource) :-

goal(maintain(Resource))

’ precondition(collide(new_idea, producer), learn).
result(learn, increase(ideasAbsorbed, mid)).

playerAgency(ENTITY) :-
effect(move_away(Entity, cursor))).

(Rule 5) ‘

(Reading 1)
goal(maintain(ideasAbsorbed))

i

(Rule 1)
goal(maintain(Resource)) :-
precondition(Condition, Outcome),
lowThreshold(Condition, Resource,Thresh),
goal(prevent(Outcome)).

(Mechanic 2)
precondition(near(cursor, new_idea), push_idea(cursor)).
result(push_idea(cursor), move_away(new_idea, cursor)).

(Mechanic 8)

goal(prevent(convert_producer)).

[(Goal)

result(convert_producer, delete(producer)).
result(convert_producer, add(consumer)).

} (precondition(le(ideasAbsorbed, @), convert_producer). ‘

Fig. 7.

Full reasoning chain, analogous to the prose interpretation found in Fig. 4. The rules invoked in the reasoning are chain are found in purple. As can be

seen, numerous rules and subfacts might need to be invoked to build up to larger pieces of knowledge, such as the chain building up to Reading 2a “The outcome
labeled ‘learn’ is favorable” which builds off of three separate game definitions and invokes Rules 1, 2, and 3.

A. Other Formalizations

In addition to the example we have described in detail, we
have also formalized and derived reasoning about a handful of
other games, including Julien Thiennot’s Cookie Clicker,? the
classic arcade games Pong and Kaboom!, and four games of our
own design.

Cookie Clicker is a resource-driven game that does not rely
on spatial movement logics, where the goal is to bootstrap au-
tomated cookie-production systems that escalate to a constantly
growing tower of upgrades and achievements. The key dynamics
in the game are feedback loops and investment—e.g., spending
a relatively small amount of cookies to purchase an upgrade
leads to the permanent faster production of cookies. We formal-
ize mechanics such as clicking on a cookie increases cookies,
time passing causes cookies to increase by “cookies per sec-
ond,” and buying a producer increases cookies per second by
that producer’s production rate, subtracts cost from number of
cookies, and increases the subsequent cost of the producer. As
there is no extrinsically stated goal in Cookie Clicker, we have
to supply cultural knowledge to the encoding in order to provide
a basis for understanding the game. Namely, we add the fact that
cookies are good to represent the likely player interpretation of
cookies as desirable.

3http://orteil. dashnet.org/cookieclicker/

The system determines that it costs cookies to increase
the cookies-per-second, which then leads to the creation of
more cookies, creating a positive feedback loop. Due to the
fact that clicking on the cookie is unrestricted, that clicking
generates cookies, and that cookies are a restriction on buying
grandmas and farms, it deduces that a player must bootstrap by
first clicking on cookies to be able to buy a producer. Given the
positive feedback loop associated with cookies-per-second and
that cookies are good, the system reasons that buying a producer
represents an investment. Finally, given that both grandmas and
farms require and consume cookies and the initialized values
for their costs, it reasons that the player must make a choice of
where to allocate their cookies, with grandmas having the lower
initial cost of the two (although an indeterminate ordering on an
arbitrary time scale).

We tried our analysis on several other game encodings, in-
cluding Pong, Kaboom, and games of our own design. The kind
of knowledge we are able to generate for these games includes
the following.

1) For Pong, we derive that the game is a symmetric competi-
tion, that the two players are antagonists of each other, and
that each player will try to hit the ball with their respective
paddle.

2) For Kaboom!, we derive facts such as that the bomber is
an antagonist, bombs harm the player, the bucket harms
bombs, the player will attempt to cause the bombs to

SUMMERVILLE et al.: FROM MECHANICS TO MEANING

collide with the bucket, and the player will attempt to
avoid causing the bombs to collide with the bottom
of the screen. We also deduce that difficulty increases
monotonically.

3) For our own games, we encode reasoning analogous to de-
sign specifications, such as “a player must perform a risky
hand-eye coordination task to keep their cool” and “the
player must make time-sensitive decisions about resource
allocation whose consequences have a tradeoff between
personal benefit and global cost.”

For external validation, we look at the work of Treanor et al.
[25] who performed a reading of Kaboom!, wherein they found
such things as:

1) “Because Kaboom! is unwinnable (like many early
arcade-style games, the difficulty just keeps progressing
until inevitable defeat), this quest to protect the world
from damage is ultimately hopeless.”

2) “We know that bombs are destructive and that the player’s
goal is to intercept them with diffusing buckets.”

Our readings decisively capture the second of these; for the
first, we deduce that difficulty increases indefinitely and the
game is unwinnable, but our system fails to overlay the addi-
tional aesthetic meanings of hopelessness and protection.

As for Pong, the closest thing to a “gold standard” reading
may be the single instruction on the Pong arcade cabinet: “Avoid
missing ball for high score” [26].

Our system successfully reconstructs this meaning: The ball
hitting the opposing side leads to an increase in score, the only
method of interaction is hitting the ball, therefore, “Avoid miss-
ing ball for high score.”

Overall, we found that human-generated dynamics and crit-
ical readings of these games matched the interpretations found
by our system, lending support to its ability to provide useful
interpretations of existing game artifacts. To the extent that our
system missed certain readings, we are confident that the rea-
soning used to arrive at those readings is authorable; however,
it remains an open research question whether a finite, static
body of reasoning principles can ever encapsulate the breadth
of reasoning principles employed by human game critics.

We also analyzed the expressive range of our system by uti-
lizing the generation half of Gemini. Limiting the scope of our
generator to games involving two or fewer distinct classes of
entities and at most two resources, we were able to generate
over 500 000 distinct readings.

VI. DISCUSSION

We have demonstrated a novel approach to the problem of
relating game mechanics to higher level meanings based on
formalizing a theory of proceduralist readings. We introduced
two novel and distinct knowledge formalisms: the specifica-
tion language Cygnus, in which we express mechanics, and
the meaning-level design intent language. Cygnus represents a
substantial language design effort, evading simple characteriza-
tion due to its dual role of supporting meaning-level interpre-
tation while also unambiguously mapping onto an executable
game (making it feasible to write a compiler back-end). The

77

meaning-level design intent language is informed by mi-
crorhetorics [27] and proceduralist readings, and allows for
generative variation through a many-to-many relationship: spec-
ifications may give rise to multiple meanings, and a single mean-
ing may have many instantiations as a specification.

Currently, we assess our work as forming a good account of
meaning for games with resource transactions, movement and
collision logics, and graphical communication affordances (in-
cluding, notably, some high-level representation of continuous
physics, which we did not illustrate in our previous examples).
Thus, we can already express simple arcade games, platform-
ers, and incremental games in a uniform way, which we assessed
would have been very difficult in existing game formalisms, such
as the VGDL [28]. Furthermore, within our general framework
of conditions, results, and communicative affordances, we es-
sentially express games in terms of their operational logics [29],
free from any particular style or genre of game, which grants
us the ability to scale to reasoning about a large range of other
common and innovative mechanical idioms at little extra author-
ing cost. For instance, we expect that we could easily codify the
mechanics of a game, such as Papers, Please [1], which escapes
easy representation in formalisms like VGDL.

ASP has been an excellent tool for prototyping our bidirec-
tional, nonpipelined system since we can simultaneously test
our rules in the context of generation and game understanding,
refining them in light of mutually beneficial rules. On the other
hand, ASP is not a perfect match for proceduralist meaning
derivations in that it only produces stable models, not structured
proofs. Since meaning derivations are isomorphic to logical
proofs, a sensible alternative might be using the Elf program-
ming language [30], which produces proofs as well as answers.
However, moving to a formalism like EIf would lose ASP’s ben-
efits of generating a complete stable model, pipeline freeness,
and ability to specify complex constraints involving negation.

Currently, there are two main limitations to the analysis por-
tion of Gemini: 1) it is focused on single-screen 2-D action
games, and 2) it only performs static analyses. The first is an
authorship challenge, as Cygnus and Gemini are capable of
supporting other styles of games, but given our generation do-
main/the domain of previous analyses, authoring out-of-domain
rules has not been focus. The second does limit the scope of read-
ings possible. While we are able to develop rules that handle
limited dynamics (e.g., Rule 6 in Fig. 7), large-scale dynamics,
like the types of properties found by Ludi [31], are likely beyond
the scope of Gemini. We note that running simulations as part
of the ASP process is possible, as it has been done by Zook and
Riedl [15] and Smith et al. [32], but as with 1) it presents an
authoring challenge.

In general, while Gemini as currently authored is capable
of analyzing and generating a wide range of games, there is
always likely to be a gap between the space of all possible
analyses/games and what can be produced by Gemini due to
the authoring challenges. We note that the general process of
authoring for Gemini is incrementally easier than for a system
like Game-o-Matic due to our ability to utilize previous readings
to either build up new readings or codify new ways of producing
a certain reading. For instance, Rule 3 in Fig. 7 is only one

78

possible way of producing the reading of a favorable outcome
and we could write other rules that would have the same reading
(e.g., an outcome is favorable if it increases the health of the
player or if it decreases the health of an antagonist).

Evaluating our game analysis engine beyond comparison to
existing readings could potentially include an expert evaluation,
requesting critical readings of games from leading scholars,
formalizing their arguments, and comparing the shapes of the
derivation trees to the ones our system generates. We could also
compare the shapes of generated meaning derivations internally,
1.e., carry out an expressive range analysis [33] over variables,
such as proof tree width, depth, and number of rules in the rea-
soning principle base used, repeated, or omitted. Furthermore,
we could use these properties of meaning derivations as char-
acteristics of games themselves to reason over or optimize for:
Perhaps we want games with the fewest possible meanings but
whose deepest meaning derivation is as deep as possible, or
some other combination of constraints.

In summary, we have presented a novel approach to compu-
tational game interpretation based on a formalization of proce-
dural reasoning, resulting in a static analysis relating mechanic-
based game definitions to high-level meanings. This paper repre-
sents an effort to combine mechanics-level game specification,
cultural knowledge, and operational logics in one formalism,
resulting in a highly expressive reasoning space.

ACKNOWLEDGMENT

The authors would like to thank M. Treanor and M. Guzdial
for helpful discussion of the ideas behind this paper.

REFERENCES

[1] L. Pope, “Papers, please,” Aug. 2013. [Online]. Available: http://
papersplea.se/

[2] P. Pedercini, “Unmanned,” 2012. [Online]. Available: http://unmanned.
molleindustria.org/

[3] 1. Bogost, Persuasive Games: The Expressive Power of Videogames.
Cambridge, MA, USA: MIT Press, 2007.

[4] A. Delwiche, “From the green berets to America’s army: Video games as
a vehicle for political propaganda,” in The Players Realm: Studies on the
Culture of Video Games and Gaming. Jefferson, NC, USA: McFarland
and Company, 2007, pp. 91-109.

[5] J.Zagal, “Ethically notable videogames: Moral dilemmas and gameplay,”
in Proc. Int. Conf. Digit. Games Res. Assoc. Found. Digit. Games, 2009,
pp. 1-9.

[6] J. Orwant, “EGGG: Automated programming for game generation,” /BM
Syst. J., vol. 39, no. 3/4, pp. 782-794, 2000.

[7] M.J.Nelson and M. Mateas, “Towards automated game design,” in AI* IA
2007: Artificial Intelligence and Human-Oriented Computing. New York,
NY, USA: Springer-Verlag, 2007, pp. 626—637.

[8] J. Togelius and J. Schmidhuber, “An experiment in automatic game de-
sign,” in Proc. IEEE Symp. Comput. Intell. Games, 2008, pp. 111-118.

[9] R.Hunicke, M. Leblanc, and R. Zubek, “MDA: A formal approach to game
design and game research,” in Proc. Challenges Games AI Workshop, 19th
Nat. Conf. Artif. Intell., 2004, pp. 1-5.

[10] M. Treanor, B. Schweizer, I. Bogost, and M. Mateas, “Proceduralist read-
ings: How to find meaning in games with graphical logics,” in Proc. 6th
Found. Digit. Games, 2011, pp. 115-122.

IEEE TRANSACTIONS ON GAMES, VOL. 11, NO. 1, MARCH 2019

[11] D. Ventura, “Mere generation: Essential barometer or dated concept,” in
Proc. 7th Int. Conf. Comput. Creativity, 2016, pp. 1-8.

[12] M. Treanor, B. Blackford, M. Mateas, and I. Bogost, “Game-o-Matic: Gen-
erating videogames that represent ideas,” in Procedural Content Gener:
Workshop Found. Digit. Games Conf., 2012, pp. 1-8.

[13] A. M. Smith and M. Mateas, “Variations forever: Flexibly generating
rulesets from a sculptable design space of mini-games,” in Proc. IEEE
Conf. Comput. Intell. Games, 2010, pp. 273-280.

[14] M. Cook and S. Colton, “Ludus Ex Machina: Building a 3D game de-
signer that competes alongside humans,” in Proc. 5th Int. Conf. Comput.
Creativity, 2014, vol. 380, pp. 1-9.

[15] A.Zook and M. O. Riedl, “Automatic game design via mechanic genera-
tion,” in Proc. 28th AAAI Conf. Artif. Intell., 2014, pp. 530-536.

[16] M. Cook and S. Colton, “A rogue dream: Automatically generating mean-
ingful content for games,” in Proc. AIIDE Workshop Exp. Artif. Intell.
Games, 2014, pp. 1-6.

[17] M. Cook and S. Colton, “From mechanics to meaning and back again:
Exploring techniques for the contextualisation of code,” in Proc. AIIDE
Workshop Artif. Intell. Game Aesthetics, 2013, pp. 1-5.

[18] G. Kuhlmann, K. Dresner, and P. Stone, “Automatic heuristic construction
in a complete general game player,” in Proc. 21st Nat. Conf. Artif. Intell.,
Jul. 2006, pp. 1457-62.

[19] S. Schiffel and M. Thielscher, “Fluxplayer: A successful general
game player,” in Proc. 22nd Nat. Conf. Artif. Intell., 2007, vol. 2,
pp. 1191-1196.

[20] D. Cook, “The chemistry of game design,” 2007. [Online]. Available:
Gamasutra.com

[21] K. Salen and E. Zimmerman, Rules of Play: Game Design Fundamentals.
Cambridge, MA, USA: MIT Press, 2004.

[22] C.Martens, “Ceptre: A language for modeling generative interactive sys-
tems,” in Proc. 11th Artif. Intell. Interact. Digit. Entertainment Conf.,
2015, pp. 1-7.

[23] K. T. Stolee and T. Fristoe, “Expressing computer science concepts
through Kodu game lab,” in Proc. 42nd ACM Tech. Symp. Comput. Sci.
Educ., 2011, pp. 99-104.

[24] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub, “Clingo = ASP +
control: Preliminary report,” Theory and Practice of Logic Programming,
vol. 14, p. Online Supplement, 2014.

[25] M. Treanor, M. Mateas, and N. Wardrip-Fruin, “Kaboom! is a many-
splendored thing: An interpretation and design methodology for message-
driven games using graphical logics,” in Proc. 5th Int. Conf. Found. Digit.
Games, 2010, pp. 224-231.

[26] A. Alcorn, “Pong,” 1972.

[27] M. Treanor, B. Schweizer, I. Bogost, and M. Mateas, “The micro-
rhetorics of game-o-matic,” in Proc. Int. Conf. Found. Digit. Games, 2012,
pp. 18-25.

[28] T. Schaul, “A video game description language for model-based or in-
teractive learning,” in Proc. IEEE Conf. Comput. Intell. Games, 2013,
pp. 1-8.

[29] M. Mateas and N. Wardrip-Fruin , “Defining operational logics,” in Proc.
Digit. Games Res. Assoc., 2009, pp. 1-8.

[30] F. Pfenning, “Elf: A language for logic definition and verified metapro-
gramming,” in Proc. 4th Annu. Symp. Logic Comput. Sci., 1989,
pp. 313-322.

[31] C. Browne, Evolutionary Game Design. Berlin, Germany: Springer Sci-
ence & Business Media, 2011.

[32] A. M. Smith, M. J. Nelson, and M. Mateas, “Computational support
for play testing game sketches,” in Proc. Artif. Intell. Interact. Digit.
Entertainment, 2009, pp. 1-6.

[33] G. Smith and J. Whitehead, “Analyzing the expressive range of a level
generator,” in Proc. Workshop Procedural Content Gener. Games, 2010,
Art. no. 4, pp. 1-4.

Authors’ photographs and biographies not available at the time of publication.

http://
http://papersplea.se
http://unmanned.
http://molleindustria.org/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

