
Zenet: Generating and Enforcing Real-Time Temporal
Invariants

Chris Lewis
University of California, Santa Cruz

1156 High St, Santa Cruz, California, USA
cflewis@soe.ucsc.edu

http://cflewis.com

ABSTRACT
Generating correct specifications for real-time event-driven
software systems is difficult and time-consuming. Even when
such specifications have been created, they are often used to
guide development rather than state properties guaranteed
by the actual system. We propose a specification genera-
tor that reads execution traces and can generate invariants
with real-time constraints. That specification can also offer
programmers the ability to repair violated invariants at run-
time. Creating fault-tolerant systems in this manner would
provide software engineers guarantees about the software’s
high-level operation and its ability to recover from errors.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications;
D.2.5 [Software Engineering]: Testing and Debugging

Keywords
specification generator, temporal invariants, runtime software-
fault monitoring, rule engine, video games

1. PROBLEM STATEMENT
Over the last 20 years, researchers have been investigating

automatically generating temporal specifications from soft-
ware source code and execution traces. Specifications serve
a variety of purposes, including code documentation, find-
ing errors and validating test suites. Specification generators
have commonly focused on deriving invariants that monitor
control flow. While these low-level specification generators
are useful, they are unable to reason about the function-
ality of the system under test (SUT) at a high-level, and
their focus on source code means that the generated spec-
ifications are implementation dependent. Moreover, while
these specifications are useful in and of themselves, their
value would greatly increase if they were combined with
fault-tolerance techniques that would allow the SUT to be
repaired to within specification.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’10, May 2-8 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-719-6/10/05 ...$10.00.

2. RESEARCH GOALS
We intend to generate sets of program invariants that form

specifications. We believe creating these specifications from
the event streams outputted by the execution of event-driven
systems will create a powerful, scalable tool that can detect
and enforce correct operation of a software system. Towards
that end, we have the following goals:

• Utilize machine learning methods, such as association
rules and temporal sequence finding, to learn invari-
ants from event streams generated by software execu-
tions.

• Deploy these invariants in a runtime software-fault mon-
itor built with a rule engine.

• Allow programmers to express the repair of invariant
violations.

We will validate our research by creating a tool, “Zenet”,
which attempts to achieve these goals.

3. PROPOSED SOLUTION
We propose generating software specifications by moni-

toring events that occur in event-driven systems, and then
giving programmers the opportunity to define repairs when
the SUT deviates from the specification.

Events are an abstraction of input, output and state. Events,
and the possible transitions between them, can be repre-
sented as an event scene graph (ESG) [2]. Event sequences
are a specific walk through an ESG. Monitoring these event
sequences allows us to view the operation of the SUT from
a high, abstracted level, separated from the implementation
and architecture of the software.

Our work is inspired by Yang & Evans’ Perracotta who
inferred temporal properties about software from event se-
quences [6], and Ernst et. al’s Daikon [5] who derived invari-
ants about a program’s data structures. We intend to build
upon these works by creating a system that combines el-
ements of both systems: one that detects invariants with
real-time temporal constraints, as well as finding various
properties about the events themselves, such as maximum
or minimum values. Our system differs by taking a data
mining approach, utilizing large corpuses of traces that are
created during software executions by end-users, generat-
ing invariants that reflect the software’s actual, rather than
intended, use.

As an example of a possible invariant, let us specify two
events: a user clicking on a save button, and the file actually

System
Under Test

Message
Broker

Rule Engine

System events

Repair events

Figure 1: Architecture of Zenet’s communication
with the system under test. Events flow through
the message broker, allowing the rule engine to run
synchronously or asynchronously.

being written to disk. From this, we can then define an
invariant (expressed formally in metric temporal logic [3]):

2(SaveClicked→ 3<5FileWritten)

This can be read as, “For all states, when the save button is
clicked, within five seconds, the file will be written.”

If the file fails to save to disk after five seconds, the in-
variant is violated. Note that we do not take into account
how many function calls are made or which software compo-
nents are utilized; this abstraction describes the high-level
operation of the SUT, as well as makes the specification im-
plementation independent, able to function even after the
SUT’s source code has been refactored.

While a generated specification can show how a system
functions, human-coded specifications are often used to ver-
ify that a system functions within certain limits as part of
fault-tolerant computing techniques [1]. Such systems use
specifications to apply repairs, and our specification can of-
fer the programmer an opportunity to define a repair of a
violated invariant, creating a fault-tolerant system. In our
file saving example, attempting to save the file to a disaster-
recovery folder could be a reasonable course of action. To
detect when invariants have been violated, and how to apply
these repairs, we turn to runtime software-fault monitors.

Runtime software-fault monitors compare the current state
of a software system against a specification, creating a warn-
ing when a deviation from the specification is detected [4].
We intend to create a user-friendly, efficient monitor using a
rule engine to monitor events fired from the SUT, with the
rule engine analyzing the event stream against invariants.
Once an invariant is violated, the rule engine can send an
event back to the SUT that will enact a repair.

The events from the SUT, and the repair events from the
monitor, will be mediated by a message broker, as illustrated
in Figure 1. Brokers can use adapters to allow messages to
be sent and received from a variety of languages, meaning
the specification and its repairs are language independent.

4. RESEARCH APPROACH
We intend to answer questions about generating invariants

from event streams, as well as the viability of rule engines
as runtime software-fault monitors, by creating Zenet. By
building the system ourselves, we hope to encounter and
answer problems about:

• Approaches to instrumenting programs as streams of
events.

• Which machine learning techniques are useful for an-
alyzing event streams.

• Whether large numbers of execution traces lead to bet-
ter results.

• How to identify meaningful invariants.

• How to employ a messaging system to allow the mon-
itor to operate synchronously and asynchronously, as
well as investigate performance differences between lo-
cal or distributed operation.

Our current progress has been focused on preliminary
studies using a rule engine as a monitor, with hand-coded
specifications. We have instrumented a small Java video
game called Infinite Mario Bros., and are able to success-
fully monitor events in the game (such as jumping, landing
and getting coins) and repair faults (using direct method
calls).

5. INTENDED EVALUATION
To evaluate Zenet, we have decided to focus on solving

problems within the video game domain. Video games are
a difficult domain to debug, as developers intentionally cre-
ate emergent behaviors in their virtual worlds that hinge on
interactions between players and simulation systems. The
state explosion that results from this emergence means that
many bugs are resistant to automated bug exposure tools.
We believe that if we are able generate specifications and
specify repairs within this domain, then the proposed ar-
chitecture will be robust enough to function in many other
areas.

We will evaluate the quality of the generated specifica-
tions against the possible bugs that could be seeded into the
game, as well as providing specifications to game designers
to ascertain their readability and quality. We hope to de-
ploy Zenet with a commercial product in order to verify its
success under real conditions.

This process should rigorously test Zenet’s capabilities,
and provide a strong foundation with which to evaluate its
contributions.

6. REFERENCES
[1] Avižienis, A., Laprie, J. C., Randell, B., and

Landwehr, C. Basic concepts and taxonomy of
dependable and secure computing. IEEE TDSC 1, 1
(January 2004), 11–33.

[2] Belli, F., Budnik, C. J., and White, L.
Event-based modelling, analysis and testing of user
interactions: approach and case study. Software
Testing, Verification and Reliability 16, 1 (2006).

[3] Chang, E., Manna, Z., and Pnueli, A.
Compositional verification of real-time systems. In
LICS ’94 Proceedings (July 1994), pp. 458–465.

[4] Delgado, N., Gates, A. Q., and Roach, S. A
taxonomy and catalog of runtime software-fault
monitoring tools. IEEE TSE 30, 12 (2004), 859–872.

[5] Ernst, M. D., Perkins, J. H., Guo, P. J.,
McCamant, S., Pacheco, C., Tschantz, M. S.,
and Xiao, C. The Daikon system for dynamic
detection of likely invariants. Sci. Comput. Program.
69, 1-3 (2007), 35–45.

[6] Yang, J., Evans, D., Bhardwaj, D., Bhat, T., and
Das, M. Perracotta: mining temporal API rules from
imperfect traces. In ICSE ’06 Proceedings (2006),
ACM, pp. 282–291.

