

A Requirements Analysis for
Videogame Design Support Tools

Mark J. Nelson
School of Interactive Computing
Georgia Institute of Technology

Atlanta, Georgia, USA

mnelson@cc.gatech.edu

Michael Mateas
Expressive Intelligence Studio

University of California, Santa Cruz
Santa Cruz, California, USA

michaelm@cs.ucsc.edu

ABSTRACT
Designing videogames involves weaving together systems of
rules, called game mechanics, which support and structure com-
pelling player experiences. Thus a significant portion of game
design involves reasoning about the effects of different potential
game mechanics on player experience. Unlike some design fields,
such as architecture and mechanical design, that have CAD tools
to support designers in reasoning about and visualizing designs,
game designers have no tools for reasoning about and visualizing
systems of game mechanics. In this paper we perform a require-
ments analysis for design-support tool for game design. We de-
velop a proposal in two phases. First, we review the design-
support-system and game-design literatures to arrive at a plausible
system that helps designers reason about game mechanics and
gameplay. We then refine these requirements in a study of three
teams of game designers, investigating their current design prob-
lems and gauging interest in our tool proposals and reactions to
prototype tools. Our study finds that a game design assistant that
is able to formally reason about abstract game mechanics would
provide significant leverage to designers during multiple stages of
the design process.

Categories and Subject Descriptors
H.5.0. Information interfaces and representation (HCI)
J.6.b. Computer-aided engineering: Computer-aided design

Keywords
authoring tools, videogames, game mechanics

1. INTRODUCTION
Videogame design is a creative design domain in which creativity
is fundamentally expressed through engineering interactive rule
systems: a game designer combines a set of game mechanics such
that, when they interact with each other and with the player’s
actions, they produce the desired gameplay.

Game designers typically prototype these rule systems to under-
stand how they operate. Prototypes range from paper mockups, in
which a stripped-down form of the game’s rule system is simu-
lated manually, to playable versions implemented on a computer,

which can be played by the designer and others to get feedback on
gameplay ideas or to discover problems.

Prototypes aim to answer both subjective and objective design
questions. The ultimate design questions are mainly subjective: is
the game interesting, fun, challenging, balanced, and so on? How-
ever, much prototyping gets at these questions indirectly by an-
swering objective questions that help the designer understand how
their rule system operates. For example, is there a way to win with
a particular combination of items? Can the player ever get to a
particular bit of story without having gotten the appropriate set-
up? Are there weapons that are redundant because they’re never
the best choice?

In previous work, we’ve proposed that the objective kinds of rea-
soning questions are amenable to being answered by automated
methods, and demonstrated a reasoning system based on logical
inference in the event calculus, a representation for reasoning
about states, events, and change over time [17]. Allowing design-
ers to query a rule system increases what design researchers call
the backtalk of the design situation [25], allowing the designer to
focus on making subjective decisions rather than on working out
the implications of those decisions by hand.

That work demonstrates the feasibility of automatically answering
at least some objective design questions that we think may be
useful in design. However, particularly since there has been little
work studying how game designers actually go about their design
processes, it remains to be determined what exactly designers
would want out of such a system, and how they would use it in
their work.

Here we undertake a study with several teams of game designers,
in order to investigate what sorts of queries about mechanics they
would find useful to be able to get automated answers to during
their design processes. This analysis is intended to arrive at a set
of functional requirements for the AI reasoning system, which
will drive the next iteration of both technical AI work in imple-
menting those features, and user-interface work in providing a
way for designers to use them comfortably. Since little work has
been done on the broader subjects of game-design ethnography,
game-design assistant tools, and so on, we also collect the design-
ers’ views on what other game-design tools they might find useful
and how they might want to interface with them. Those more
exploratory ideas partly take the form of following up on negative
results—designers who didn’t want the mechanics-reasoning tool
we were proposing, but had interest in something different.

The goals of this project have some similarity to work in
computer-aided design (CAD)—especially early work before
focus shifted to 3D modeling—which also aims to integrate auto-
mated reasoning into the design loop, allowing the designer to try

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICFDG 2009, April 26–30, 2009, Orlando, FL, USA.
Copyright 2009 ACM 978-1-60558-437-9…$5.00.

out design ideas rapidly without having to work out technical
details (such as whether an idea has problems with structural in-
tegrity). Therefore, we begin by reviewing the literature on CAD
and subsequent design-support approaches, which have gone
through several decades of requirements analysis, implemented
systems, and debate in these other design domains.

There is also an existing literature on videogame design. Although
there has been little to no game-design ethnography in a descrip-
tive, sociological sense, there are a number of writings on the
game-design process from a more how-to, textbook perspective.
These summarize conventional wisdom for how the game-design
process ought to operate, at least in an idealized sense. We draw
from that literature, combined with the design-support literature,
to develop plausible ideas for how design-support tools can factor
into the videogame design process, considering a broader space of
possible tools within which the specific mechanics-reasoning tool
we’re building is situated.

From that starting point, we conducted a contextual-design study
with three teams of independent game designers, to determine if
and how the mechanics-reasoning system we propose could be
useful for answering design questions that they had about game
designs they were working on at the time of the study. This study
was aimed in part to validate and revise our ideas, drawn from the
design-support and game-design literature, on how a game-
mechanics reasoner would fit into their design practices. More
directly, it aimed to identify specific types of queries that the de-
signers would find it useful to be able to get automated answers
to. Based on this series of interviews, which included designers
interacting with focusing prototypes of possible tools, we refined
our model of the early-stage game design process and the support
a tool could provide in this process.

2. DESIGN-SUPPORT SYSTEMS
Ideas on how to integrate computers with the design process are
nearly as old as practical electronic computers. The earliest rele-
vant work, from 1956, conceives of a conversational process be-
tween designers and machines, in which the machine carries out
tedious calculations involving material properties, while the de-
signer makes high-level design decisions [19,22]. In the terminol-
ogy of Schön’s influential view of design as a reflective conversa-
tion with the design situation [25], this is in retrospect a proposal
for the machine to participate in the design conversation by in-
creasing the backtalk of a situation, crunching numbers to illumi-
nate current constraints and implications.

2.1 Initial development of CAD
The first serious requirements analysis for a design-support sys-
tem determined that it should have a graphical input method that
would allow designers to make and modify sketches; the system
would both display refined sketches back to the designer, and
simultaneously convert them into internal representations on
which automated numerical analyses (such as stress analysis)
could be performed. The result would be a system that should
function in two roles: “at some times, it would be the designer’s
slave, at others it would alert the designer to impossible require-
ments or constraints being imposed” [20, pp. 95-96]. This dual
view of a backend automated reasoning system coupled with a
front-end interactive modeling tool has gone through a series of
evolutions, with parts variously emphasized or de-emphasized.

Early work on backend reasoning showed that designers were
willing to try out more modifications when automated stress

analysis was available, and also began exploring giving designers
computerized parts catalogs, both so they could simulate the
physical properties of a known part, and quickly retrieve parts
with specific desired properties [20, pp. 104-105].

Sutherland’s Sketchpad system provided a front end, with a light
pen and real-time graphics display that were at the time quite
novel [27]. He showed some advantages to computer sketching
over paper sketching, such as being able to precisely draw dia-
grams with large numbers of components (especially repetitive
ones). He nonetheless concluded, “it is only worthwhile to make
drawings on the computer if you get something more out of the
drawing than just a drawing”, so rather than positioning Sketch-
pad primarily as a computer drawing tool, he positioned it as an
“man-machine graphical communication system”, with sketching
the input method by which a designer communicated design in-
formation to the backend reasoning systems. To that end, it sup-
ported semantic annotations about the meanings of lines in the
sketch and their relationships to each other, allowing, for example,
force-distribution analysis on a sketch of a truss bridge, or simula-
tion of sketches of electronic circuits [27, pp. 137-138].

In contrast, later systems did see interactive modeling and produc-
tion of design diagrams as a major use of CAD [28, ch. 6], and an
influential line of work developed a set of graphically editable
three-dimensional surface primitives that could be combined to
produce arbitrary shapes [3].

2.2 Supporting domain knowledge
A second wave of systems, coinciding with a shift from the engi-
neering to the design community, took design-support systems in
several different directions, mostly focusing on the importance of
knowledge in specific design domains.

In many domains, vocabularies and representations have evolved
to encode useful ways of thinking about problems. Using a ge-
neric set of geometric surfaces as the representation for all design
problems was criticized for losing that domain-specific knowl-
edge, at worst encouraging a design style that leads to visually
impressive but poor designs, akin to using a lot of fonts and visual
effects in desktop-publishing software [13]. Even when it didn’t
have outright negative effects, the focus on visual modeling led to
criticisms that CAD was failing to fulfill its original vision as a
design assistant, and instead serving a narrower role as
computerized draughtsman [14]. An early attempt to improve that
situation built a domain-specific tool for roof design, using a tra-
ditional architects’ vocabulary of ridges, verges, valleys, eaves,
hips, and so on—representations that bring relevant design ques-
tions to the fore, such as the relationship between structural sup-
port and space enclosure, and interior and exterior surfaces [21].

The development of knowledge-based AI systems in the 1980s
provided an opportunity to bring automated reasoning to these
kinds of symbolic representations (rather than numerical simula-
tions like stress analysis). For example, if a building were de-
signed using terminology from municipal codes (windows, floors,
hallways, etc.), and the municipal codes themselves were encoded
in a design-support system, the system could determine which
parts of the fire code applied, and whether a design met them [9].

Domain-oriented design environments (DODEs) combine and
extend several of these approaches [5]. They start with building
blocks meaningful in a particular domain (e.g. sinks, counters,
ovens, and windows for kitchen design) and allow designers to
compose them into higher-level representations. They extend the

idea of domain-specific knowledge to include not only factual
knowledge (such as structural soundness or building codes), but
also design knowledge, such as best practices and common solu-
tions. This knowledge can be employed to do things like critique a
proposed design (the sink isn’t in front of a window), or to pro-
vide design suggestions and the reasons for them (the sink should
be placed near the range, due to common workflow), shifting the
computer’s role in the design conversation from providing back-
talk to actively participating on the design side as well [7].

Knowledge-based systems run into the problem that few domains
are well-defined and static enough to effectively capture domain
knowledge in a tool that can be built and deployed to users, lead-
ing to the necessity of open systems that can be evolved and ex-
tended [11]. Applying that principle to DODEs, they’ve been
extended to support designers evolving (and sharing amongst each
other) their representations and design knowledge [6], which has
developed into a concept of metadesign systems that support the
designer not only in a specific design domain, but in the process
of specifying and evolving the design domains themselves [10].

A different line of work at around the same time argued that CAD
had fundamentally erred in being based around graphically inter-
acting with a drawing—that of the two things that can be found in
any design office, namely conversation and drawings, the conver-
sation was where the design took place, with the drawings being
secondary, and mainly representing the end result of design [15].
In particular, this work argued that, early in the design process,
there is rarely a single design in progress for which there could be
a drawing, but instead many, often disconnected, bits and pieces
of design goals, tentative conclusions, design decisions, and ideas
being pursued in parallel. Although admitting that drawing does
play a role in this process, this work instead built a prototype sys-
tem that converses textually with the designer, learning about his
or her design goals, bringing them up later as reminders, making
suggestions, critiquing ideas, answering questions, and so on.

2.3 Creativity support
As a result of this history of development, several commentators
have abstracted general principles for how design-support systems
might help specifically with the creative aspects of design.

Schön proposes four main uses of a design system: enhance the
seeing-drawing-seeing loop, allow construction and exploration of
microworlds, help manage a repertoire of prototypes and apply
them in specific design situations, and allow the designer to dis-
cover and reflect on their design knowledge [26].

Lawson and Loke propose five roles for a system in the design
conversation: learner, informer, critic, collaborator, and initiator
[15]. As a learner, the system makes note of the design goals and
preferences of the designer, facts about the current design situa-
tion, proposed ideas or design decisions, and justifications for
decisions or preferences. As an informer, it answers questions
based on what it knows so far. As a critic, it checks the validity of
comments the designer makes, and warns if there are problems
with proposed design decisions. As a collaborator, it tries to
elaborate on the designer’s comments or proposals. As an initia-
tor, it jumpstarts dead-ends by starting new lines of discussion or
suggesting new perspectives on a problem.

Giaccardi and Fischer [10] propose that a creativity-support sys-
tem needs to help designers cope with ill-defined problems by
integrating problem framing with problem solving; to support
reflective conversation with the design situation; and to support

sharing of knowledge among people with different perspectives
and backgrounds. To get at this, they propose (among other
things) that design-support systems need to have embedded crit-
ics; need to support reuse and sharing of design representations
and solution; and need to support collaboration among designers.

3. VIDEOGAME DESIGN SUPPORT
Given the lessons of several decades of design-support systems,
what should go into a videogame design-support system? There is
little research studying the work processes of videogame design-
ers that can be used to inform design-support systems. However,
quite a bit has been written on game design from a more idealized
perspective—designers’ views of how games are, or at least ought
to be, designed—that can be used as a starting point.

Nearly all treatments of games agree that designing games begins
with the design of game mechanics, the systems of rules that
evolve the game state over time and in response to interaction
[1,8,24]. One guide for how to prototype games suggests stripping
away all the “window dressing” of a game to focus on a simple
model of just the mechanics, even acting them out on paper or
with physical models, “to allow you to wrap your brain around the
game mechanics and see how they function” [8, ch. 7].

The primary design issue with game mechanics is figuring out
how they interact to produce the gameplay: the challenges, re-
wards, and decisions encountered by a player. Games are built by
adding, removing, or changing mechanics, but design goals are
usually formulated in terms of gameplay rather than mechanics
themselves. An influential view describes this as a mechan-
ics/dynamics/aesthetics hierarchy: mechanics define the rules of
the game, which interact with each other and the player to produce
the dynamics of gameplay, which in turn interact with the game’s
art, cultural context, and the player’s preferences to produce the
aesthetics of the game [12]. A good starting point for a design-
support system might therefore be helping the designer to negoti-
ate the relationship between mechanics and dynamics.1

Dynamics are largely defined by the interaction of mechanics with
each other to produce constituative mechanics, the set of rules that
are logically implied by the game mechanics [24, ch. 12]. Al-
though constituative mechanics are not literally game mechanics
in the sense of being explicitly represented in the game (those are
the operational mechanics), they nonetheless describe how the
game’s rule system operates. For example, if due to the con-
straints imposed by various mechanics there are no ways to win a
game without acquiring a particular item, then a constituative
mechanic of the game is that the player needs to acquire that item
in order to win, even though it isn’t explicitly a win condition.

Negotiating the relationship between operational mechanics and
constituative mechanics is particularly well suited to automated
reasoning, since constituative mechanics are quite literally the sets
of rules that can be formally derived from the operational mechan-
ics. Designers get at this relationship by building simple proto-
types, with everything except the bare rule system stripped out
(the visual representations employed by such prototypes are typi-
cally abstract geometric figures, such as circles and triangles), in
order to figure out how the rule system operates. Allowing auto-

1 We have separately done some preliminary work to assist with

the aesthetic design problem in the context of skinning games,
i.e. mapping graphical elements onto a game’s elements [16].

mated derivation of the logical implications of a set of game me-
chanics can speed up this process considerably. By making impli-
cations of a set of game mechanics immediately available, the
assistant increases the “backtalk” of the design situation and al-
lows for quicker design iterations.

In terms of Lawson and Loke’s roles, a design-reasoning system
primarily plays the informer role, answering questions from the
designer about the implications of a set of mechanics. We answer
these queries using a formalization of game mechanics in the
event calculus, a symbolic logic that represents state and change
of state over time [17]. In this representation, various types of
reasoning and queries can be done both forwards and backwards
in time. A game can be played or simulated forwards in time. If
we want to see if a particular state is reachable (say, player wins
without ever getting the key), we can reason backwards in time to
find a sequence of events that would result in that outcome. One
obvious use is to find sequences that the designer thought
shouldn’t be possible, i.e. we thought our operational mechanics
produced a constituative mechanic that they actually didn’t (or
vice versa), which is usually discovered by looking through debug
logs collected in playtesting. Additionally, we can query for
states or sequences of events meeting some criterion, such as all
ways of beating a game in less than 10 seconds, or all enemies
that could possibly be the first enemy the player encounters. The
system can also play a critic role (again using Lawson and Loke’s
terminology), maintaining a set of such “should be possible” and
“shouldn’t be possible” invariants and checking them as the de-
sign is modified—something akin to software-engineering regres-
sion tests, but for game designs rather than their implementations.
There are a number of possibilities for other such design queries;
the purpose of our study in the rest of this paper is to understand
which types of design queries and prototype reasoning are useful
to designers engaged in a real game-design process.

A difference from many CAD systems is that this proposed me-
chanics-reasoning starting point has no real interactive modeling
component. This is mainly because games have no canonical vis-
ual representation. While a 3d model of a building is a natural
visual representation for a physical building, what is the natural
visual representation for a game, which is fundamentally a proce-
dural system (a process)? There do exist tools, such as Game-
Maker and Alice, that support novice designers in visually design-
ing restrictive classes of games. Such tools, however, are aimed at
easing game implementation rather than design, e.g. by making it
easy to put objects on a 2d screen and have them move around,
but not for helping designers think about the design space of pos-
sible mechanics that result in the movement of the objects on
screen. Further, since such tools provide implementation support
for restricted subclasses of games, they are not generally used by
professional designers.

Professional designers do use graphical tools in a few limited
contexts, such as level design, but levels are not really the core of
a game design, and in fact the reliance on tools that make it easier
to do things like add more levels to a game rather than improve its
gameplay has been criticized [4, pp. 120-124]. If a visual tool
promoted focus on visual design, as critics argued it has in some
cases with CAD, this could also exacerbate a similar problem in
game design, where some games overly rely on cosmetics to the
detriment of good gameplay [4, pp. 107-115]. There may be ways
to develop a visual representation of games that is more useful for
design (and we collect some preliminary ideas in our study), but

we start with requirements analysis for the backend reasoning as
likely to be the larger short-term gain.

We do start with a set of simple primitives that can represent any
game mechanic—state and state evolution rules, such as events
causing a change in state, a combination of state causing events,
events causing other events, and so on. This might seem similar to
the way in which graphical modeling in CAD was criticized for
using a generic set of surface primitives to represent all designs. A
main difference here is that, whereas representing roofs as geo-
metric surfaces did not follow traditional design representations,
representing game mechanics as state and state evolution rules is
precisely how current game prototyping is done, usually by di-
rectly writing C++ code that stores state in variables and calls
functions to update their values.

Game designers have also periodically called for a design vocabu-
lary to allow them to discuss higher-level design concepts [2]. If a
well-developed vocabulary of that sort existed, along with associ-
ated rules of thumb for when to use various mechanics, a library
of such concepts and design guidelines could be used to build a
domain-oriented design environment, analogous to the one
Fischer et al built for kitchen design [5]. The lack of a well-
developed design science for videogames, however, means that
we currently lack an agreed upon design vocabulary and guide-
lines to encode in such a design environment (though a restricted
subset could perhaps be captured to produce a tool targeted at
novices). The fact that game designers recognize a need for the
development and exchange of a design vocabulary in the first
place aligns better with Giaccardi and Fischer’s suggestion that
tools ought to support problem framing as well as problem solving
[10], suggesting that one useful tool would be one that let design-
ers build up and share libraries of game-design vocabularies and
pieces. One way of integrating this with the mechanics-reasoning
tool would be to define the higher-level vocabulary in terms of the
low-level language of state and state-evolution rules.

4. INTERVIEW METHODOLOGY
To validate the concept of a game-design assistant that helps de-
signers reason about the interaction of game mechanics, and to
collect a set of requirements for the kinds of reasoning it should
be able to perform, we conducted a study with three small teams
of independent game designers, each of whom was in the midst of
a design project. We followed a contextual design methodology
[29], investigating to what extent a game-design assistant would
be useful for the design questions they were facing at the time, by
proposing and testing out design-assistant prototypes on the prob-
lems they were actually working on. Since game designers don’t
necessarily have a good model for what an assistant might actu-
ally be able to do for them, this required an iterative process of
interviews with focusing prototypes, where feedback from one
interview feeding the next focusing prototype.

We started by interviewing each team about their project, current
design questions, and existing prototyping techniques. This wasn’t
intended as a full ethnographic interview, but rather as a light-
weight process mapping that allows us to understand enough of
their design practice to converse with them intelligently in the rest
of the interviews, make sensible proposals, and refer to agreed
upon elements of their design process [18].

From there, we proposed some scenarios where we thought a
system that reasons about mechanics could provide answers to
relevant design questions. These proposals varied from floating an

idea to see if it sounded interesting to the designer, to paper
mockups of a hypothetical interface, to prototypes of a backend
reasoning system that could provide answers in specific situations.

It’s worth emphasizing that these prototypes were intended pri-
marily to collect requirements for the automated-reasoning sys-
tem, not at this stage for the interface. This AI-centered contex-
tual-design approach differs from a more common methodology
in HCI of doing interface-centered contextual design: prototyping
non-functional interfaces in order to understand how a user would
interact with a system, and, from that understanding, identifying
required functionality. That approach, however, tends to work
well only if the functional hooks are not overly complex. During
the study, the researcher needs to tell the potential user what the
system would have done if it were functional; and, after the study,
the identified functionality needs to be implemented to the speci-
fications. With complex AI systems, it is difficult to accurately
tell the user what a system would have done if it had existed, and
to gauge their response to this non-existent functionality; it is also
fairly easy to identify wishlist features that turn out to be impossi-
ble to implement as envisioned. Therefore, we followed a func-
tionality-first style of prototyping, identifying what it is designers
would like such a system to be able to do. We served as the inter-
face, translating designers’ queries into the system, and translating
the answers back for them; this allows us to get at what queries, if
any, are useful, before we move on (in future research) to consid-
ering how to make it easy for designers to specify and interpret
the queries. This approach does still contrast from a purely AI-
driven development style, by applying HCI-derived methodology
to the design of the AI system’s features. We did also collect, in a
more exploratory fashion, ideas for interfaces and graphical mod-
eling, largely gleaned from paper mockups, sometimes proposed
by us, and sometimes drawn by designers who had an idea of
what they’d like to see in an interface.

A particularly strong participatory aspect of this design process
was necessary for a number of reasons. There is little existing
work on game design, so beginning with a purely observational
study to understand how designers work, and using that as the
basis for designing a system, would be unlikely to inform the
design of a game-design assistant in the short to medium term. In
addition, game design is, as with many creative design practices,
quite idiosyncratic, with design styles often strongly influenced by
a designer’s personal design practices. As a result, a significant
degree of deference is necessary to designers’ control of their own
artistic practices, and therefore we need specific opinions and
reactions about how our proposed tool might fit into those prac-
tices. On a more practical level, independent game designers, the
most likely early adopters of such a tool due to the focus on me-
chanics innovation in independent game design, have nearly com-
plete control over the tools they use, so perceived usefulness is at
the very least necessary for such a tool to be actually useful.

5. CASE STUDIES
We studied three teams of independent game designers, one con-
sisting of a single individual, and two of two-person teams. Due to
the sensitivity of publishing design information for games that
have not yet been released, we partially anonymize two of the
three case studies, by substituting similar examples from existing
commercial games when specific references to game-design fea-
tures are necessary, and discussing other design issues in general
terms. The first case below, however, is discussed without ano-
nymization by agreement with the designers, Chronic Logic.

5.1 Case study 1: NARPG
NARPG, for “Not an RPG”, is partly a parody of the gameplay of
role-playing games (RPGs), especially the kinds in which the
player spends the majority of her time fighting battles in order to
collect items that defeated enemies drop, known as “loot”. In
NARPG, the battles are automated, and the gameplay consists
entirely of picking up loot, fitting it into the inventory, equipping
or de-equipping armor and weapons, using health potions, and so
on. The design goal is to create a casual game, playable by non-
hardcore gamers in small slices of time, in which the primary
gameplay task is a puzzle-like optimization of inventory. Players
have to decide when they should pick up valuable items (such as
sacks of gold) and useful items (such as armor), given a fixed-size
inventory (though some items may change the size of the inven-
tory) and physical shape constraints in the inventory (represented
on a 2D grid).

In this case study, the designer was in the later stages of design;
the core mechanics (fundamental rule systems) had already been
established when we began interviewing. The design effort was
therefore focused on level design. During level design, given
fixed core mechanics, the designer creates objects and spatial
layouts that appropriately balance challenge and reward. Design
questions that arose during level design for NARPG include: Are
some items unnecessary, in that a player can effectively ignore
them and still win? Are some items too powerful? Given a spe-
cific level (spatial layout, enemy encounters and objects), how
well do various player strategies (as suggested by the designer)
fare? When we began working with the designers, they were an-
swering these sorts of questions via cycles of modifying and play-
ing a prototype version of the game, which was more or less a
working version of the game with placeholder art and interfaces.

We implemented a formalized version of their game mechanics in
our reasoner, and worked with them to answer a series of design
questions. One large category of design questions they had was
what gameplay would be like for different types of players; for
example, how would the player fare who always picks up the
strongest armor and weapons they can find, uses health potions,
and does nothing else? While forward simulations using the stan-
dard prototyping process could begin to provide insight on this
question, the formal representation of the mechanics allowed us to
generate simulated play traces with specific characteristics. For-
ward simulation within a traditional procedural prototype could
require potentially millions of runs until one with the desired
properties is generated. In addition, the designers were particu-
larly interested in “backwards” reasoning from outcomes to me-
chanics changes, e.g. what the smallest or largest value for a par-
ticular quantity (health, sword strength, etc.) should be to still
achieve a desired outcome. In general they had no shortage of
design questions they felt comfortable posing within or formalized
game mechanics framework, and found the mechanics-reasoning
approach fairly easy to work into their design process. In fact,
they wished we were further along than the requirements analysis
phase as they really wanted a finished prototype with imple-
mented front end that they could use within their design process.

An interesting query type that the designers brought up, and that
we do not currently implement in our prototypes, involves finding
player models that can achieve a particular outcome. This type of
reasoning would be able to generate different hypothetical play
styles given particular outcomes. In the context of our event-
calculus back end, answering such queries would involve logical
induction, which is an avenue we shall certainly investigate.

5.2 Case study 2: A real-time strategy game
The second case study was a real-time strategy (RTS) game in the
middle stages of design. The designer had already built a series of
small playable prototypes, each aimed at one sub-part of the
game: the economic system, the combat system, and base building
and base defense scenarios. However, the core mechanics had not
yet been established. The questions being explored at this stage in
his design are a mixture of mechanics and interface/player experi-
ence questions. Mechanics questions include: Do all objects
(units, buildings, etc.) play a useful role? Given the interactions
between the game subsystems (economy, base defense, etc.), do
the gameplay dynamics avoid overly convergent, dominant strate-
gies? Interface/player experience questions include: Do players
try to do things that the game doesn’t support, or not even try out
things that the designer expected would be interesting? Do people
figure out what to do, or get confused by the options available? Is
the game fast-paced or slow-paced?

Our mechanics-reasoning proposals didn’t immediately interest
him, partly because at this stage of the design he was more inter-
ested in gaining high-level insight into potential design directions,
as well as the user-experience aspect of what sorts of gameplay
would be interesting or produce the kind of experience he was
after. Automated reasoning about mechanics came across as more
useful for design-debugging questions for later in the design proc-
ess, like whether certain units made the game unbalanced, so
didn’t seem to be a good fit.

To try to get at higher-level design questions, we proposed model-
ing the games at a very abstract level, based in part on some of his
existing boxes-and-arrow paper design sketches representing
high-level mechanics and player choices. Working with him we
developed a prototype of a visual design language, in particular
for the economy aspect of the game, with an abstract view of eve-
rything in the game as a source or a sink of resources, and differ-
ent types of nodes or arrows connecting them.

Since the goal of our requirements analysis at this stage was to
collect requirements for the reasoning backend, we mainly used
prototypes of a visual design language as focusing prototypes to
elicit ideas on what kinds of reasoning questions he might want to
ask once he’d modeled a design in. However, to a great extent, he
was most interested in a visual design language itself as a way of
storyboarding games. Similarly, what he found most helpful about
the abstract model of economies as interconnected sources and
sinks was simply that it was a useful representation for thinking
about the problem, regardless of whether any automated reasoning
was provided. Likewise, he was interested in our proposal for an
abstract rock-paper-scissors model of unit combat because it pro-
vided him with mental tools for thinking about the unit combat
design problem. Thus, interestingly, this designer was very inter-
ested in our formal representations, but primarily not for the
backend reasoning they support, but for the front-end representa-
tional ability they provide, that helps in thinking about the design.
He perceived the backend reasoning as being useful for tuning a
design later in the design process.

One backend reasoning application did arise from one of his pro-
totypes. This prototype had tested out ideas for base-defense me-
chanics by having the player build bases with static defenses that
a computer player then assaulted. He abandoned this prototype
because most of the outcomes gave no design feedback besides
“the computer player failed because it played stupidly”. Improv-
ing the AI to fix each discovered problem was tedious and not

getting at the point of the prototype, so he ended up building a
two-player networked prototype, replacing the computer player
with friends who volunteered to try it out. Explicit reasoning
about mechanics may have provided a mechanism for getting
design feedback from the first prototype: given a base configura-
tion and a set of units, the reasoner can generate a plan to defeat
the base’s defenses. The designer can then compare that plan with
his ideas of how he had expected the base to be (or not be) defeat-
able. Since in this particular case he had already moved onto test-
ing this scenario with human opponents, it was difficult to deter-
mine what design feedback this would have given if it had been
available at the time of the abandoned prototype.

The design wasn’t yet at the stage of integrating the different sub-
domains of gameplay into a unified game, but he had some ideas
about what prototypes he would build to do so. Most of those
ideas weren’t amenable to much automated support, because the
main design question he had for integrating the different subsys-
tems, at least initially, was how the player would perceive the
result—e.g., how they split their attention between combat and
resource management, whether they find the combination confus-
ing or too difficult to manage at the same time, and so on.

5.3 Case study 3: An evolution-based game
The third case study was very early in the design phase, essen-
tially at the point of having brainstormed some design ideas and
identified avenues for exploration. It had a number of possible
components, but one of the main novelties was a genetic-
algorithm style dynamical system where some elements of the
game evolve via mutation and crossover operations.

The main design questions at this early stage were: What’s inter-
esting about having an evolutionary dynamic in the game? What
kinds of outcomes would be interesting? How can those tie in
with other parts of the game, such as combat?

This presents a somewhat different set of design questions than
for games further along in the design process. At this very early
stage, the driving question is: What in this general design space
might be interesting? Their existing design process consisted
mostly of design discussions and inventions of hypothetic scenar-
ios where the mechanic might produce interesting results, as well
as scenarios where it might cause problems.

The main uses of our prototypes at this stage of the design were to
enable designers to more quickly answer “what if?” or “could that
happen?” sorts of questions that came up during brainstorming.
For example, a simple evolution model can be used to check what
outcomes are common, whether specific queried outcomes are
possible, whether any of the outcomes from a class of outcomes
are possible, and so on.

A stumbling block preventing our prototype tools from being
more useful to this team at their early stage of the design process
was the fact that we served as the tools’ interface, since a user-
friendly interface hadn’t been built yet. With the brainstorm-
heavy design process, they would have preferred to have a tool
they could take home and interact with on their own to really get
an idea of how it could help them explore a design space, or what
else they might want it to do. The opportunistic aspect of this
early stage of design necessitates a tighter interaction loop than is
possible with us as intermediaries, though the designers were
enthusiastic about the potential for the reasoning system to
quickly answer questions that came up during brainstorming.

6. CONCLUSIONS
From the case studies and responses to our series of focusing pro-
totypes in each case, we can abstract some requirements for a
game-design assistant.

There is a split between designers who primarily want a backend
reasoning versus front-end modeling tool, with one of our inter-
viewees primarily wanting the modeling tool, and two the reason-
ing tool. One of the designers (case study 2) worked and proto-
typed in considerably different ways than the other two. Whereas
the design process of the other two was fairly mechanics heavy,
mapping nicely to our model of a game-design assistant as a
backend system that helps reason about game mechanics, his was
much more interface heavy. This “interface-in” rather than “me-
chanics-out” design style led to a number of design questions,
such as questions about player perception and attention, that are
difficult for an automated reasoning system to answer.

In addition, that designer, perhaps not coincidentally, had a much
more interface-in view of what our tool should do. He was most
interested in the possibility of a storyboarding tool for game de-
signers to be able to use to quickly sketch and visualize designs,
with a visual design language and sets of built-in vocabulary for
common design domains. This leads to an interesting proposal for
what the game-design equivalent of a CAD tool’s 3d modeling is:
not sketching of the game’s appearance in a superficial sense, but
sketching of the game’s interconnected processes and elements.
Methodologically, this designer also disagreed with our backend-
first approach: He had some interest in automated reasoning, but
mostly thought of it as a possible next step to consider after we
first built a visual modeling tool, which might present opportuni-
ties to hang automated reasoning off of some of its widgets.

For backend reasoning, we found it useful to frame most sug-
gested queries in terms of simulation. Our initial attempts to fol-
low the logical-reasoning literature’s conceptual splits into simu-
lation, planning, abduction, and so on, mostly led to confusion
about what the tool could do. For example, planning, i.e. finding a
sequence of player actions that would cause a particular outcome,
is conceptually a form of directed simulation: find a simulation
run that has a particular outcome, and then see what happened in
it. These sorts of metaphors led to a good deal of interest in how
the system could do reasoning more complicated than standard
simulation, such as “backwards” reasoning to find what the largest
or smallest value of some parameter would have to be to result in
a particular outcome. An interesting technique that developed in
several of the prototypes was using different questions to isolate
different causes of outcomes. For example, sticking with a fixed
player model and asking if a particular situation is possible gets at
to the role world conditions play in possible outcomes; fixing
world conditions and asking if a player can achieve an outcome
gets at whether a particular kind of gameplay (for example, a
player exploiting a design flaw) could cause an outcome.

One complication is that many questions that initially sound ob-
jective turn out to have subjective components. A designer who
wants to know if there are multiple ways to achieve something
usually means multiple meaningfully different ways. A significant
line of future work will be on finding ways to map these fuzzier
kinds of design questions to more black and white questions that
can be answered by logical reasoning. More concretely, many
design questions envision games with some randomness, and are
interested in frequency of outcomes, which is traditionally not

something well supported by logical reasoning; therefore, a way
to reason about nondeterminism will be needed.

This question-answering approach was most useful in the designs
somewhat further along, which could be seen as testing design
ideas, rather than at the stage of trying to invent them. In the
brainstorming stage, one of the case studies (#2) found it more
useful to go to a very abstract model of the game that removed
most of the literal mechanics, and preferred to use more of a vis-
ual modeling way of thinking about the design. The other (#3),
seemed to still be interested in more of a mechanics-simulation
approach, but wanted a tool with a reasonably user-friendly inter-
face that could be used without us present to really integrate it into
a brainstorming process.

An interesting possibility raised by this split between exploratory
prototyping, which looks for possible design goals, and testing-
type prototyping, which checks whether particular proposed de-
signs have those goals, is a regression test for design. If design
goals identified in the exploratory phase are noted, then during the
testing phase, a series of regression tests can be run to make sure
the design goals haven’t been broken by recent changes, much as
in software engineering regression tests check to see if previous
bugs were reopened by new modifications.

One feature that designers rarely found interesting that we had
thought might be useful was querying for elements of a design
that meet some criterion; for example, show all enemies that could
be the first enemy encountered, or all squares the player can reach
without jumping. One hypothesis (besides the possibility that it
just isn’t a useful mode of inquiry) is that such queries would be
most naturally posed in a graphical information-visualization
manner, rather than literally as queries returning a list of results;
for example, setting filters in a visual representation of a game to
color-code objects that meet a particular property. A query
mechanism would also be useful in a system that investigates
design suggestions, since bits of proposed design would need to
find parts of the existing design to which they’re applicable.

Games with separate components that can be prototyped sepa-
rately lead to considerably different design processes from those
that have a more unified core mechanic. In NARPG, which was
built around a central mechanic, much of the prototyping was of
the testing sort, and there was little desire for a built-in design
vocabulary: the design innovations were in the core mechanic, and
the vocabulary from existing games that it does use (such as bat-
tles and an inventory system) is easy enough for the designers to
think about without. In the RTS, by contrast, the designer wasn’t
particularly focused on economy design by inclination, so would
have found some prompting on how to think about economies
useful. In addition, separate prototypes lead to questions of how to
integrate the different components into the complete game. A
regression-testing approach may prove useful there (e.g. to make
sure changing something in the economy doesn’t break something
in the combat), but none of the designs had advanced to the inte-
gration stage during our study.

Finally, the direction proposed by domain-oriented design envi-
ronments and especially metadesign [10] mapped well to some of
the design issues we encountered. Game-design vocabulary is a
mixture of existing terms inherited from previous games (e.g.
RTS-design vocabulary) and novel ideas. Thus designers may
want the ability to design higher-level abstractions than the state
and state-evolution rules at which our tool (and actual game im-
plementations) currently works, and to import existing representa-

tions where they exist. For example, our second case study would
have found it useful to have his thinking prompted by a toolbox of
off-the-shelf RTS design vocabulary.

7. FUTURE WORK
The immediate future work is to build more fully functional proto-
types implementing the requirements collected here. The backend
work involves integrating probabilistic reasoning and logical in-
duction into the framework we currently have, plus work on com-
putational tractability to allow the system to be used frequently
and on large problems. There are, equally importantly, many in-
terface questions. How should a designer represent design goals,
partial designs, and so on? How should they query the system?
Should the system have built-in common design elements; and
how should designers specify free-form mechanics? What’s the
balance between a visual design language and programming to
add arbitrarily complex new mechanics to the system?

A first step on the interface could be fixing a design and backend,
and building a user-friendly interface solely for the query facility,
to allow designers in the brainstorming phase to interact with the
system in a tighter loop. Further on, designers will need ways of
inputting, modifying, and building representation language for
their designs, which involves potential work on anything from
domain-specific languages for specifying mechanics to visual
design languages for interactive design sketching.

Apart from the specific mechanics-reasoning tool we’re building,
there are many avenues for future work in building other design-
assistant tools. A tool along the lines suggested by our second
case study, providing a sort of storyboarding-for-game-mechanics
environment, would likely be useful to a number of designers.
Tools focused on assisting novice game designers also have a
large potential audience, and likely have different requirements.

8. ACKNOWLEDGMENTS
Many thanks to the game designers who generously gave their
time to meet with us, including Josiah Pisciotta from Chronic
Logic and Chaim Gingold. Thanks also to Intel for funding.

9. REFERENCES
[1] Adams, E. and Rollings, A. 2007. Fundamentals of Game

Design. Prentice Hall.

[2] Church, D. 1999. Formal abstract design tools. Game Devel-
oper (August 1999).

[3] Coons, S.A. 1967. Surfaces for computer-aided design of
space forms. Technical Report TR-41, Massachusetts Insti-
tute of Technology.

[4] Crawford, C. 2003. Chris Crawford on Game Design. New
Riders.

[5] Fischer, G. 1994. Domain-oriented design environments.
Automated Software Engineering 1(2): 177-203.

[6] Fischer, G. 1998. Seeding, evolutionary growth and reseed-
ing: Constructing, capturing, and evolving knowledge in do-
main-oriented design environments. Automated Software En-
gineering 5(4): 447-464.

[7] Fischer, G., McCall, R., and Morch, A. 1989. Design envi-
ronments for constructive and argumentative design. Proc.
Human Factors in Computing Systems (CHI), 269-275.

[8] Fullerton, T. 2008. Game Design Workshop (2nd ed.). Mor-
gan Kaufmann.

[9] Gero, J.S. 1986. An overview of knowledge engineering and
its relevance to CAAD. Proc. CAAD Futures 1985, 107-119.

[10] Giaccardi, E. and Fischer, G. 2008. Creativity and evolution:
A metadesign perspective. Digital Creativity 19(1): 19-32.

[11] Hewitt, C. 1985. The challenge of open systems. Byte 10(4):
223-242.

[12] Hunicke, R., LeBlanc, M., and Zubek, R. 2004. MDA: A
formal approach to game design and game research. Working
Notes of the Challenges in Game AI Workshop at AAAI 2004.

[13] Lawson, B.R. 2002. CAD and creativity: Does the computer
really help? Leonardo 35(3): 327-331.

[14] Lawson, B.R. 2005. Oracles, draughtsmen, and agents: The
nature of knowledge and creativity in design and the role of
IT. Automation in Construction 14(3): 383-391.

[15] Lawson, B.R. and Loke, S.M. 1997. Computers, words and
pictures. Design Studies 18(2): 171-183.

[16] Nelson, M.J. and Mateas, M. 2008. An interactive game-
design assistant. Proc. Intelligent User Interfaces (IUI), 90-
98.

[17] Nelson, M.J. and Mateas, M. 2008. Recombinable game
mechanics for automated design support. Proc. Artificial In-
telligence and Interactive Digital Entertainment (AIIDE), 84-
89.

[18] Palmiter, S., Lynch, G., Lewis, S., and Stempski, M. 1994.
Breaking away from the conventional usability lab. Behav-
iour & Information Technology 13(1-2): 128-131.

[19] Price, G.R. 1956. How to speed up invention. Fortune maga-
zine (November 1956), 150-228.

[20] Reintjes, J.F. Numerical Control: Making a New Technology.
Oxford University Press, 1991.

[21] Riley, J.P. and Lawson, B.R. 1982. RODIN: A system of
modeling three dimensional roof forms. Proc. CAD 1982.

[22] Ross, D.T. 1956. Gestalt programming: A new concept in
automatic programming. Proc. Western Joint Computer Con-
f., 5-10. Summarized with commentary in [23].

[23] Ross, D.T. 1986. A personal view of the personal work sta-
tion: Some firsts in the fifties. Proc. History of Personal
Workstations, 19-48.

[24] Salen, K. and Zimmerman, E. 2004. Rules of Play. MIT
Press.

[25] Schön, D.A. 1983. The Reflective Practitioner. Basic Books.

[26] Schön, D.A. 1992. Designing as reflective conversation with
the materials of a design situation. Research in Engineering
Design 3: 131-147.

[27] Sutherland, I.E. 1963. Sketchpad: A man-machine graphical
communication system. PhD thesis, Massachusetts Institute
of Technology.

[28] Weisberg, D.E. 2008. The Engineering Design Revolution.
CadHistory.net.

[29] Wixon, D., Holtzblatt, K, and Knox, S. 1990. Contextual
design: An emergent view of system design. Proc. Human
Factors in Computing Systems (CHI), 329-336.

