A Requirements Analysis for
Videogame Design Support Tools

Mark J. Nelson
School of Interactive Computing
Georgia Institute of Technology

Atlanta, Georgia, USA

mnelson@cc.gatech.edu

ABSTRACT

Designing videogames involves weaving together esgst of
rules, called game mechanics, which support anctsire com-
pelling player experiences. Thus a significant ipartof game
design involves reasoning about the effects ofedtifit potential
game mechanics on player experience. Unlike sorsigmidields,
such as architecture and mechanical design, thet GAD tools
to support designers in reasoning about and visoglidesigns,
game designers have no tools for reasoning abalivianalizing
systems of game mechanics. In this paper we peréoraquire-
ments analysis for design-support tool for gamdgiesiVe de-
velop a proposal in two phases. First, we review tkesign-
support-system and game-design literatures toeaatia plausible
system that helps designers reason about game nieshend
gameplay. We then refine these requirements iudysof three
teams of game designers, investigating their ctidesign prob-
lems and gauging interest in our tool proposals @attions to
prototype tools. Our study finds that a game desiggistant that
is able to formally reason about abstract game amch would
provide significant leverage to designers durindtiple stages of
the design process.

Categories and Subject Descriptors

H.5.0. Information interfaces and representatio@IjH
J.6.b. Computer-aided engineering: Computer-aicesitd

Keywords

authoring tools, videogames, game mechanics

1. INTRODUCTION

Videogame design is a creative design domain irclivbreativity
is fundamentally expressed through engineeringrantve rule
systems: a game designer combines a sgaiwie mechanicsuch
that, when they interact with each other and with player's
actions, they produce the desired gameplay.

Game designers typically prototype these rule syst® under-
stand how they operate. Prototypes range from papekups, in
which a stripped-down form of the game’s rule syste simu-
lated manually, to playable versions implementecaaomputer,

Permission to make digital or hard copies of alpart of this work for
personal or classroom use is granted without feeiged that copies are
not made or distributed for profit or commercialvadtage and that
copies bear this notice and the full citation oa flist page. To copy
otherwise, or republish, to post on servers oreistribute to lists,
requires prior specific permission and/or a fee.

ICFDG 2009 April 26-30, 2009, Orlando, FL, USA.

Copyright 2009 ACM 978-1-60558-437-9...$5.00.

Michael Mateas
Expressive Intelligence Studio
University of California, Santa Cruz
Santa Cruz, California, USA

michaelm@cs.ucsc.edu

which can be played by the designer and otherstiéegdback on
gameplay ideas or to discover problems.

Prototypes aim to answer both subjective and obgaesign

questions. The ultimate design questions are maintbyective: is
the game interesting, fun, challenging, balancad,so on? How-
ever, much prototyping gets at these questionsently by an-

swering objective questions that help the designelerstand how
their rule system operates. For example, is thevayato win with

a particular combination of items? Can the playesreget to a
particular bit of story without having gotten thppaopriate set-
up? Are there weapons that are redundant becaag&etmever
the best choice?

In previous work, we've proposed that the objeckireds of rea-
soning questions are amenable to being answerealitoymated
methods, and demonstrated a reasoning system baskxical

inference in the event calculus, a representat@nréasoning
about states, events, and change over time [1iwilg design-
ers to query a rule system increases what desggarehers call
the backtalkof the design situation [25], allowing the desigte

focus on making subjective decisions rather thamworking out

the implications of those decisions by hand.

That work demonstrates the feasibility of autoratjcanswering
at least some objective design questions that e tmay be
useful in design. However, particularly since thees been little
work studying how game designers actually go altleeit design
processes, it remains to be determined what exaldbigners
would want out of such a system, and how they wagd it in
their work.

Here we undertake a study with several teams ofegaesigners,
in order to investigate what sorts of queries almethanics they
would find useful to be able to get automated amswe during

their design processes. This analysis is intendeatrive at a set
of functional requirements for the Al reasoningtsys, which

will drive the next iteration of both technical Alork in imple-

menting those features, and user-interface workroviding a

way for designers to use them comfortably. Sinttke livork has
been done on the broader subjects of game-dedigrogaphy,

game-design assistant tools, and so on, we alsectttie design-
ers’ views on what other game-design tools theyhiriigpd useful

and how they might want to interface with them. 3éanore
exploratory ideas partly take the form of following on negative
results—designers who didn’t want the mechanicsaeiag tool

we were proposing, but had interest in somethiffgraint.

The goals of this project have some similarity t@rkvin
computer-aided design (CAD)—especially early workfobe
focus shifted to 3D modeling—which also aims tegrate auto-
mated reasoning into the design loop, allowingdbsigner to try

out design ideas rapidly without having to work dathnical
details (such as whether an idea has problemsstitictural in-
tegrity). Therefore, we begin by reviewing the riitieire on CAD
and subsequent design-support approaches, whick bame
through several decades of requirements analysiglemented
systems, and debate in these other design domains.

There is also an existing literature on videogaesgh. Although

there has been little to no game-design ethnograplaydescrip-

tive, sociological sense, there are a number ofings on the

game-design process from a more how-to, textboogpeetive.

These summarize conventional wisdom for how theegdasign

process ought to operate, at least in an ideakeede. We draw
from that literature, combined with the design-suppiterature,

to develop plausible ideas for how design-suppmtstcan factor
into the videogame design process, consideringader space of
possible tools within which the specific mechameasoning tool
we're building is situated.

From that starting point, we conducted a contextiesign study
with three teams of independent game designerdetiermine if

and how the mechanics-reasoning system we propose be

useful for answering design questions that they diaout game
designs they were working on at the time of the\stThis study
was aimed in part to validate and revise our iddemyn from the
design-support and game-design literature, on howame-

mechanics reasoner would fit into their design ficas. More

directly, it aimed to identify specific types of epies that the de-
signers would find it useful to be able to get adted answers
to. Based on this series of interviews, which ideldi designers
interacting with focusing prototypes of possiblels; we refined
our model of the early-stage game design processhensupport
a tool could provide in this process.

2. DESIGN-SUPPORT SYSTEMS

Ideas on how to integrate computers with the depigiess are
nearly as old as practical electronic computere &arliest rele-
vant work, from 1956, conceives of a conversatigrakess be-
tween designers and machines, in which the madatanges out
tedious calculations involving material propertiedjile the de-

signer makes high-level design decisions [19,22}hk terminol-

ogy of Schon’s influential view of design as a eeflve conversa-
tion with the design situation [25], this is inn&tpect a proposal
for the machine to participate in the design cosagon by in-

creasing the backtalk of a situation, crunching bers to illumi-

nate current constraints and implications.

2.1 Initial development of CAD

The first serious requirements analysis for a desigpport sys-
tem determined that it should have a graphical impethod that
would allow designers to make and modify sketclies;system
would both display refined sketches back to theigies, and
simultaneously convert them into internal represgons on
which automated numerical analyses (such as steabysis)
could be performed. The result would be a systeat #hould
function in two roles: “at some times, it would tie designer’s
slave, at others it would alert the designer todsgible require-
ments or constraints being imposed” [20, pp. 95-98lis dual
view of a backend automated reasoning system coupith a
front-end interactive modeling tool has gone thioagseries of
evolutions, with parts variously emphasized or dgleasized.

Early work on backend reasoning showed that desigaere
willing to try out more modifications when autométetress

analysis was available, and also began exploring@idesigners
computerized parts catalogs, both so they couldulsii® the
physical properties of a known part, and quickliriese parts
with specific desired properties [20, pp. 104-105].

Sutherland’s Sketchpad system provided a front eitth, a light
pen and real-time graphics display that were attiime quite
novel [27]. He showed some advantages to computschEng
over paper sketching, such as being able to pigcibaw dia-
grams with large numbers of components (especralpetitive
ones). He nonetheless concluded, “it is only wohtitevto make
drawings on the computer if you get something mare of the
drawing than just a drawing”, so rather than ponritig Sketch-
pad primarily as a computer drawing tool, he posgid it as an
“man-machine graphical communication system”, veéketching
the input method by which a designer communicatesigsh in-
formation to the backend reasoning systems. Toehdf it sup-
ported semantic annotations about the meaning@es lin the
sketch and their relationships to each other, atigwfor example,
force-distribution analysis on a sketch of a trosdge, or simula-
tion of sketches of electronic circuits [27, pp71138].

In contrast, later systems did see interactive figl@nd produc-
tion of design diagrams as a major use of CAD {28,6], and an
influential line of work developed a set of graplig editable
three-dimensional surface primitives that could doenbined to
produce arbitrary shapes [3].

2.2 Supporting domain knowledge

A second wave of systems, coinciding with a shdnf the engi-
neering to the design community, took design-supgystems in
several different directions, mostly focusing oer tmportance of
knowledge in specific design domains.

In many domains, vocabularies and representatians kvolved
to encode useful ways of thinking about problemsing a ge-
neric set of geometric surfaces as the representédr all design
problems was criticized for losing that domain-sfiednowl-

edge, at worst encouraging a design style thatsleadvisually
impressive but poor designs, akin to using a Idbofs and visual
effects in desktop-publishing software [13]. Evehew it didn’t
have outright negative effects, the focus on visnadleling led to
criticisms that CAD was failing to fulfill its origal vision as a
design assistant, and instead serving a narrowée b5
computerized draughtsman [14]. An early attemptriprove that
situation built a domain-specific tool for roof dgs using a tra-
ditional architects’ vocabulary of ridges, vergealleys, eaves,
hips, and so on—representations that bring relegtasign ques-
tions to the fore, such as the relationship betwstarctural sup-
port and space enclosure, and interior and extstidaces [21].

The development of knowledge-based Al systems @& 1880s
provided an opportunity to bring automated reasprtm these
kinds of symbolic representations (rather than migaksimula-
tions like stress analysis). For example, if a dind were de-
signed using terminology from municipal codes (vaws, floors,
hallways, etc.), and the municipal codes themsela® encoded
in a design-support system, the system could déterwhich

parts of the fire code applied, and whether a desigt them [9].

Domain-oriented design environments (DODEs) combamel
extend several of these approaches [5]. They wiént building
blocks meaningful in a particular domain (e.g. sinkounters,
ovens, and windows for kitchen design) and allowigieers to
compose them into higher-level representationsyheend the

idea of domain-specific knowledge to include notyofactual
knowledge (such as structural soundness or buildouges), but

sharing of knowledge among people with differentspectives
and backgrounds. To get at this, they propose (gmather

alsodesignknowledge, such as best practices and common solu-things) that design-support systems need to haveedded crit-

tions. This knowledge can be employed to do thlikgscritique a
proposed design (the sink isn’t in front of a wingdpor to pro-
vide design suggestions and the reasons for thears{bk should
be placed near the range, due to common workflehifting the
computer’s role in the design conversation fromvjating back-
talk to actively participating on the design sidengell [7].

Knowledge-based systems run into the problem thatdomains
are well-defined and static enough to effectivedyptare domain
knowledge in a tool that can be built and deplotedsers, lead-
ing to the necessity afpen systemthat can be evolved and ex-
tended [11]. Applying that principle to DODEs, they been
extended to support designers evolving (and shanmngngst each
other) their representations and design knowleéyewhich has
developed into a concept ofetadesigrsystems that support the
designer not only in a specific design domain, inuthe process
of specifying and evolving the design domains thelues [10].

A different line of work at around the same timguad that CAD
had fundamentally erred in being based around dggal inter-
acting with a drawing—that of the two things thahde found in
any design office, namely conversation and drawitigs conver-
sation was where the design took place, with tlavihgs being
secondary, and mainly representing the end re$uaesign [15].
In particular, this work argued that, early in thesign process,
there is rarely a single design in progress forcWhhere could be
a drawing, but instead many, often disconnected, dnd pieces
of design goals, tentative conclusions, designsitats, and ideas
being pursued in parallel. Although admitting tldadwing does
play a role in this process, this work instead ttaiiprototype sys-
tem that converses textually with the designemnieg about his
or her design goals, bringing them up later as mdanis, making
suggestions, critiquing ideas, answering questiand,so on.

2.3 Creativity support

As a result of this history of development, seve@nmentators
have abstracted general principles for how desigmpsrt systems
might help specifically with the creative aspedtsi@sign.

Schoén proposes four main uses of a design systeh@nee the
seeing-drawing-seeing loop, allow construction erploration of
microworlds, help manage a repertoire of prototyped apply
them in specific design situations, and allow tlesigner to dis-
cover and reflect on their design knowledge [26].

Lawson and Loke propose five roles for a systentha design
conversation: learner, informer, critic, collaboratand initiator
[15]. As a learner, the system makes note of ttsigdegoals and
preferences of the designer, facts about the dudesign situa-
tion, proposed ideas or design decisions, andfipatibns for
decisions or preferences. As an informer, it answgrestions
based on what it knows so far. As a critic, it dtsethe validity of
comments the designer makes, and warns if thergprafdems
with proposed design decisions. As a collaboraibtries to
elaborate on the designer's comments or propoAalan initia-
tor, it jumpstarts dead-ends by starting new lioediscussion or
suggesting new perspectives on a problem.

Giaccardi and Fischer [10] propose that a cregtsttpport sys-
tem needs to help designers cope with ill-defineasblems by
integrating problemframing with problem solving to support
reflective conversation with the design situatiand to support

ics; need to support reuse and sharing of desigresentations
and solution; and need to support collaborationragraesigners.

3. VIDEOGAME DESIGN SUPPORT

Given the lessons of several decades of designesupgstems,
what should go into a videogame design-supporesyatThere is
little research studying the work processes of aidene design-
ers that can be used to inform design-support systélowever,
quite a bit has been written on game design franmoee idealized
perspective—designers’ views of how games aret lmaat ought
to be, designed—that can be used as a starting, poin

Nearly all treatments of games agree that desiggamges begins
with the design of game mechanics, the systemsulef rthat

evolve the game state over time and in responsatéoaction

[1,8,24]. One guide for how to prototype games sstgstripping
away all the “window dressing” of a game to focusa simple

model of just the mechanics, even acting them oupaper or
with physical models, “to allow you to wrap youmbr around the
game mechanics and see how they function” [8, kh. 7

The primary design issue with game mechanics igrifig out
how they interact to produce the gameplay: thelehgeés, re-
wards, and decisions encountered by a player. Ganeelsuilt by
adding, removing, or changing mechanics, but degigals are
usually formulated in terms of gameplay rather timaechanics
themselves. An influential view describes this asnmachan-
ics/dynamics/aesthetics hierarchyechanicsdefine the rules of
the game, which interact with each other and thgqylto produce
the dynamicsof gameplay, which in turn interact with the game’
art, cultural context, and the player’'s preferenmeproduce the
aestheticsof the game [12]. A good starting point for a desi
support system might therefore be helping the desitp negoti-
ate the relationship between mechanics and dyndmics

Dynamics are largely defined by the interactiomeichanics with
each other to produ@mnstituative mechanicthe set of rules that
are logically implied by the game mechanics [24, tB]. Al-
though constituative mechanics are not literallyjngamechanics
in the sense of being explicitly represented inghme (those are
the operational mechani¢s they nonetheless describe how the
game’s rule system operates. For example, if duéhéocon-
straints imposed by various mechanics there an@ays to win a
game without acquiring a particular item, then astituative
mechanic of the game is that the player needsdoircthat item
in order to win, even though it isn’t explicitlyén condition.

Negotiating the relationship between operationathmeics and
constituative mechanics is particularly well suitedautomated
reasoning, since constituative mechanics are tjtetally the sets
of rules that can be formally derived from the @pi@nal mechan-
ics. Designers get at this relationship by buildsigple proto-
types, with everything except the bare rule sysstripped out
(the visual representations employed by such pypést are typi-
cally abstract geometric figures, such as circles @iangles), in
order to figure out how the rule system operatdbowing auto-

! We have separately done some preliminary worksgisawith
the aesthetic design problem in the contexslafininggames,
i.e. mapping graphical elements onto a game’s ai&s1]&6].

mated derivation of the logical implications ofet 8f game me-
chanics can speed up this process considerablyndiyng impli-

cations of a set of game mechanics immediatelylablai the
assistant increases the “backtalk” of the desiguason and al-
lows for quicker design iterations.

In terms of Lawson and Loke’s roles, a design-reempsystem
primarily plays the informer role, answering quess from the
designer about the implications of a set of medsaWe answer
these queries using a formalization of game meckain the
event calculus, a symbolic logic that represerdtesand change
of state over time [17]. In this representationriaas types of
reasoning and queries can be done both forwarddackvards
in time. A game can be played or simulated forwandgme. If
we want to see if a particular state is reachaddg,(player wins
without ever getting the key), we can reason bacltsvan time to
find a sequence of events that would result in twitome. One
obvious use is to find sequences that the desigheught
shouldn’'tbe possible, i.e. we thought our operational meicisa
produced a constituative mechanic that they agtuditin't (or
vice versa), which is usually discovered by lookihgbugh debug
logs collected in playtesting. Additionally, wencauery for
states or sequences of events meeting some anitexich as all
ways of beating a game in less than 10 secondall @nemies
that could possibly be the first enemy the playeoeinters. The
system can also play a critic role (again using $@wand Loke’s
terminology), maintaining a set of such “shouldgussible” and
“shouldn’t be possible” invariants and checkingnthas the de-
sign is modified—something akin to software-engiimegregres-
sion tests, but for game designs rather than timgilementations.
There are a number of possibilities for other sdekign queries;
the purpose of our study in the rest of this papeo understand
which types of design queries and prototype reagpare useful
to designers engaged in a real game-design process.

A difference from many CAD systems is that thispmeed me-
chanics-reasoning starting point has no real iotat@ modeling
component. This is mainly because games have mmnaza vis-
ual representation. While a 3d model of a buildiaga natural
visual representation for a physical building, wisathe natural
visual representation for a game, which is fundaaibna proce-
dural system (a process)? There do exist toold) siscGame-

Maker andAlice, that support novice designers in visually design-

ing restrictive classes of games. Such tools, hewere aimed at
easing gaménplementatiorrather than design, e.g. by making it
easy to put objects on a 2d screen and have theve around,
but not for helping designers think about the desipace of pos-
sible mechanics that result in the movement of dbgcts on
screen. Further, since such tools provide impleatamt support
for restricted subclasses of games, they are notrghy used by
professional designers.

Professional designers do use graphical tools fewa limited
contexts, such as level design, but levels aregeaaily the core of
a game design, and in fact the reliance on toalsrttake it easier
to do things like add more levels to a game ratihan improve its
gameplay has been criticized [4, pp. 120-124]. Wisual tool
promoted focus on visual design, as critics argudgs in some
cases with CAD, this could also exacerbate a sinpitablem in
game design, where some games overly rely on castetthe
detriment of good gameplay [4, pp. 107-115]. Thesy be ways
to develop a visual representation of games thauoise useful for
design (and we collect some preliminary ideas in siudy), but

we start with requirements analysis for the backexasoning as
likely to be the larger short-term gain.

We do start with a set of simple primitives thamh capresent any
game mechanic—state and state evolution rules, aschvents
causing a change in state, a combination of staisicg events,
events causing other events, and so on. This > similar to
the way in which graphical modeling in CAD was icited for
using a generic set of surface primitives to regmesll designs. A
main difference here is that, whereas represemtiofs as geo-
metric surfaces did not follow traditional desiggpresentations,
representing game mechanics as state and statgienolules is
precisely how current game prototyping is done,allgwby di-
rectly writing C++ code that stores state in vaeaband calls
functions to update their values.

Game designers have also periodically called fdesign vocabu-
lary to allow them to discuss higher-level designaepts [2]. If a
well-developed vocabulary of that sort existednglavith associ-
ated rules of thumb for when to use various medsara library
of such concepts and design guidelines could bd teséuild a
domain-oriented design environment, analogous te tme
Fischer et al built for kitchen design [5]. The Kaof a well-

developed design science for videogames, howeveansthat
we currently lack an agreed upon design vocabuday guide-
lines to encode in such a design environment (thaugestricted
subset could perhaps be captured to produce atdogéted at
novices). The fact that game designers recognineea for the
development and exchange of a design vocabulahenfirst

place aligns better with Giaccardi and Fischer'ggastion that
tools ought to support problem framing as well asbfem solving
[10], suggesting that one useful tool would be tira let design-
ers build up and share libraries of game-desigrabolaries and
pieces. One way of integrating this with the medatsneasoning
tool would be to define the higher-level vocabuleryerms of the
low-level language of state and state-evolutiorsul

4. INTERVIEW METHODOLOGY

To validate the concept of a game-design assisitatthelps de-
signers reason about the interaction of game méhaand to
collect a set of requirements for the kinds of oaé&sg it should
be able to perform, we conducted a study with tismeall teams
of independent game designers, each of whom wemeeimidst of
a design project. We followed a contextual desiggthmdology
[29], investigating to what extent a game-desigsisiant would
be useful for the design questions they were faairthe time, by
proposing and testing out design-assistant proéstym the prob-
lems they were actually working on. Since gamegiesis don't
necessarily have a good model for what an assistégtit actu-
ally be able to do for them, this required an tigeaprocess of
interviews with focusing prototypes, where feedbdckn one
interview feeding the next focusing prototype.

We started by interviewing each team about theijegt, current
design questions, and existing prototyping techesghis wasn'’t
intended as a full ethnographic interview, but eatas a light-
weight process mapping that allows us to understraligh of
their design practice to converse with them irgelitly in the rest
of the interviews, make sensible proposals, andrrif agreed
upon elements of their design process [18].

From there, we proposed some scenarios where weghha
system that reasons about mechanics could provideeas to
relevant design questions. These proposals vaed floating an

idea to see if it sounded interesting to the desigto paper
mockups of a hypothetical interface, to prototypés backend
reasoning system that could provide answers inifipsituations.

It's worth emphasizing that these prototypes werterided pri-
marily to collect requirements for the automatealsmning sys-
tem, not at this stage for the interface. This Afiered contex-
tual-design approach differs from a more commonhoutlogy

in HCI of doing interface-centered contextual desigrototyping

non-functional interfaces in order to understand lacuser would
interact with a system, and, from that understagdidentifying

required functionality. That approach, however,dg&rio work

well only if the functional hooks are not overlyraplex. During

the study, the researcher needs to tell the patemter what the
system would have done if it were functional; aafter the study,
the identified functionality needs to be implemehte the speci-
fications. With complex Al systems, it is difficulb accurately
tell the user what a system would have done iad bxisted, and
to gauge their response to this non-existent fondlity; it is also
fairly easy to identify wishlist features that tuynt to be impossi-
ble to implement as envisioned. Therefore, we fodd a func-
tionality-first style of prototyping, identifyingvhatit is designers
would like such a system to be able to do. We skagethe inter-
face, translating designers’ queries into the systnd translating
the answers back for them; this allows us to gethet queries, if
any, are useful, before we move on (in future nefgao consid-
ering how to make it easy for designers to speaifg interpret
the queries. This approach does still contrast feopurely Al-

driven development style, by applying HCI-derivedthodology
to the design of the Al system’s features. We did aollect, in a
more exploratory fashion, ideas for interfaces graphical mod-
eling, largely gleaned from paper mockups, sometip®posed
by us, and sometimes drawn by designers who haitiesn of

what they'd like to see in an interface.

A particularly strong participatory aspect of thissign process
was necessary for a number of reasons. Theretlies dikisting

work on game design, so beginning with a purelyeokational

study to understand how designers work, and udiag &s the
basis for designing a system, would be unlikelyirtform the

design of a game-design assistant in the shorteium term. In

addition, game design is, as with many creativégdegractices,
quite idiosyncratic, with design styles often styyrinfluenced by
a designer’s personal design practices. As a reauignificant

degree of deference is necessary to designers’atafttheir own

artistic practices, and therefore we need specdfmions and
reactions about how our proposed tool might fibittiose prac-
tices. On a more practical level, independent gdeségners, the
most likely early adopters of such a tool due t® filcus on me-
chanics innovation in independent game design, haagly com-

plete control over the tools they use, so perceigfulness is at
the very least necessary for such a tool to bealigtuseful.

5. CASE STUDIES

We studied three teams of independent game desigoee con-
sisting of a single individual, and two of two-pansteams. Due to
the sensitivity of publishing design informationr fgames that
have not yet been released, we partially anonyrize of the

three case studies, by substituting similar examfitem existing

commercial games when specific references to gaaiga fea-
tures are necessary, and discussing other desigasisn general
terms. The first case below, however, is discussitdout ano-

nymization by agreement with the designers, Chrbomic.

5.1 Casestudy 1. NARPG

NARPG, for “Not an RPG”, is partly a parody of themeplay of
role-playing games (RPGs), especially the kindswimch the
player spends the majority of her time fightingtlestin order to
collect items that defeated enemies drop, knowrfl@as”. In
NARPG, the battles are automated, and the gamegmagists
entirely of picking up loot, fitting it into the irentory, equipping
or de-equipping armor and weapons, using healtiopstand so
on. The design goal is to create a casual gamgalgka by non-
hardcore gamers in small slices of time, in whibk primary
gameplay task is a puzzle-like optimization of imggy. Players
have to decide when they should pick up valualelmst (such as
sacks of gold) and useful items (such as armovirga fixed-size
inventory (though some items may change the sizaefnven-
tory) and physical shape constraints in the inugnfepresented
on a 2D grid).

In this case study, the designer was in the latages of design;
the core mechanics (fundamental rule systems) hreddy been
established when we began interviewing. The desifprt was
therefore focused on level design. During leveliglgsgiven
fixed core mechanics, the designer creates objctk spatial
layouts that appropriately balance challenge amdhmd. Design
questions that arose during level design for NARRcude: Are
some items unnecessary, in that a player can m#dctignore
them and still win? Are some items too powerful¥e&Bi a spe-
cific level (spatial layout, enemy encounters arfjects), how
well do various player strategies (as suggestethbydesigner)
fare? When we began working with the designersy there an-
swering these sorts of questions via cycles of fgoj and play-
ing a prototype version of the game, which was nmrdess a
working version of the game with placeholder ad arterfaces.

We implemented a formalized version of their ganeeinanics in
our reasoner, and worked with them to answer &serf design
questions. One large category of design questibeg had was
what gameplay would be like for different typespméyers; for
example, how would the player fare who always piaksthe
strongest armor and weapons they can find, usdthhaations,
and does nothing else? While forward simulatioringighe stan-
dard prototyping process could begin to providegimson this
question, the formal representation of the mechlaaliowed us to
generate simulated play traces with specific charestics. For-
ward simulation within a traditional procedural fiype could
require potentially millions of runs until one witthe desired
properties is generated. In addition, the desigmesse particu-
larly interested in “backwards” reasoning from amnes to me-
chanics changes, e.g. what the smallest or laxgdse for a par-
ticular quantity (health, sword strength, etc.) ddobe to still
achieve a desired outcome. In general they hadhootage of
design questions they felt comfortable posing witi formalized
game mechanics framework, and found the mechaeassning
approach fairly easy to work into their design msx In fact,
they wished we were further along than the requeres analysis
phase as they really wanted a finished prototypth winple-
mented front end that they could use within thesign process.

An interesting query type that the designers brough and that
we do not currently implement in our prototypesoives finding
player models that can achieve a particular outcdrhis type of
reasoning would be able to generate different Hygtatal play
styles given particular outcomes. In the contextoaf event-
calculus back end, answering such queries wouldhmvlogical
induction, which is an avenue we shall certainlestigate.

5.2 Casestudy 2: A real-time strategy game
The second case study was a real-time strategy)(Bai8e in the
middle stages of design. The designer had alrealyebseries of
small playable prototypes, each aimed at one subgqfathe
game: the economic system, the combat system, aseltwuilding
and base defense scenarios. However, the core meshed not
yet been established. The questions being expkréds stage in
his design are a mixture of mechanics and intefifideger experi-
ence questions. Mechanics questions include: Doobjects
(units, buildings, etc.) play a useful role? Givle interactions
between the game subsystems (economy, base deétogedo
the gameplay dynamics avoid overly convergent, damt strate-
gies? Interface/player experience questions inclidte players
try to do things that the game doesn’t supporfaireven try out
things that the designer expected would be integ2tDo people
figure out what to do, or get confused by the opgiavailable? Is
the game fast-paced or slow-paced?

Our mechanics-reasoning proposals didn’t immedjabeterest
him, partly because at this stage of the desigwdee more inter-
ested in gaining high-level insight into potentiglsign directions,
as well as the user-experience aspect of what sbrgmmeplay
would be interesting or produce the kind of experéee he was
after. Automated reasoning about mechanics canmsaas more
useful for design-debugging questions for latethim design proc-
ess, like whether certain units made the game anbadl, so
didn’t seem to be a good fit.

To try to get at higher-level design questions pr@posed model-
ing the games at a very abstract level, basedriropasome of his
existing boxes-and-arrow paper design sketchesesepting
high-level mechanics and player choices. Workinthwiim we

developed a prototype of a visual design languag@articular

for the economy aspect of the game, with an alistraw of eve-

rything in the game as a source or a sink of ressyrand differ-
ent types of nodes or arrows connecting them.

Since the goal of our requirements analysis at stage was to
collect requirements for the reasoning backend maily used

prototypes of a visual design language as focupnogptypes to
elicit ideas on what kinds of reasoning questiomsright want to
ask once he'd modeled a design in. However, teeatgxtent, he
was most interested in a visual design languag¥f #s a way of
storyboarding games. Similarly, what he found niedpful about

the abstract model of economies as interconneatadcas and
sinks was simply that it was a useful represemator thinking

about the problem, regardless of whether any autmnaasoning
was provided. Likewise, he was interested in owppsal for an
abstract rock-paper-scissors model of unit comeatbse it pro-
vided him with mental tools for thinking about theit combat

design problem. Thus, interestingly, this desigmas very inter-
ested in our formal representations, but primarigt for the

backend reasoning they support, but for the frowt-epresenta-
tional ability they provide, that helps in thinkim@pout the design.
He perceived the backend reasoning as being uteftlining a

design later in the design process.

One backend reasoning application did arise fromafhis pro-
totypes. This prototype had tested out ideas feeduefense me-
chanics by having the player build bases with stdgifenses that
a computer player then assaulted. He abandonedtbistype
because most of the outcomes gave no design fdedizsides
“the computer player failed because it played stypi Improv-
ing the Al to fix each discovered problem was tedi@nd not

getting at the point of the prototype, so he endpdouilding a
two-player networked prototype, replacing the cotapplayer

with friends who volunteered to try it out. Expticieasoning
about mechanics may have provided a mechanism dting

design feedback from the first prototype: givenaaeconfigura-
tion and a set of units, the reasoner can genaratan to defeat
the base’s defenses. The designer can then cortzarnglan with

his ideas of how he had expected the base to he{dre) defeat-
able. Since in this particular case he had alreadyed onto test-
ing this scenario with human opponents, it wasdaliff to deter-

mine what design feedback this would have givei lifad been
available at the time of the abandoned prototype.

The design wasn't yet at the stage of integratimgdifferent sub-
domains of gameplay into a unified game, but he s@de ideas
about what prototypes he would build to do so. Maisthose
ideas weren't amenable to much automated suppecause the
main design question he had for integrating théediht subsys-
tems, at least initially, was how the player woplerceive the
result—e.g., how they split their attention betwemmmbat and
resource management, whether they find the combmabnfus-
ing or too difficult to manage at the same time] ao on.

5.3 Casestudy 3: An evolution-based game

The third case study was very early in the desigasp, essen-
tially at the point of having brainstormed someigieddeas and
identified avenues for exploration. It had a numbég&mpossible

components, but one of the main novelties was aetgen
algorithm style dynamical system where some eleseiitthe

game evolve via mutation and crossover operations.

The main design questions at this early stage W&ftet's inter-
esting about having an evolutionary dynamic in gaene? What
kinds of outcomes would be interesting? How cars¢htie in
with other parts of the game, such as combat?

This presents a somewhat different set of desiggstipns than
for games further along in the design process.his very early
stage, the driving question is: What in this gehdesign space
might be interesting? Their existing design processsisted
mostly of design discussions and inventions of tlyptic scenar-
ios where the mechanic might produce interestisglte, as well
as scenarios where it might cause problems.

The main uses of our prototypes at this stageetifsign were to
enable designers to more quickly answer “what @f"could that

happen?” sorts of questions that came up duringidtaming.

For example, a simple evolution model can be usahéck what
outcomes are common, whether specific queried owgsoare
possible, whether any of the outcomes from a abdissutcomes
are possible, and so on.

A stumbling block preventing our prototype tool®rfr being

more useful to this team at their early stage efdbsign process
was the fact that we served as the tools’ interfaoee a user-
friendly interface hadn’t been built yet. With thmainstorm-

heavy design process, they would have preferreldate a tool

they could take home and interact with on their davmeally get

an idea of how it could help them explore a desigace, or what
else they might want it to do. The opportunistipexg of this

early stage of design necessitates a tighter ittteraloop than is

possible with us as intermediaries, though the giess were

enthusiastic about the potential for the reasonsygtem to

quickly answer questions that came up during btainsng.

6. CONCLUSIONS

From the case studies and responses to our séffiesusing pro-
totypes in each case, we can abstract some reartenfor a
game-design assistant.

There is a split between designers who primarilptwabackend
reasoning versus front-end modeling tool, with eheur inter-
viewees primarily wanting the modeling tool, anatthe reason-
ing tool. One of the designers (case study 2) wbrked proto-
typed in considerably different ways than the otinay. Whereas
the design process of the other two was fairly raaats heavy,
mapping nicely to our model of a game-design amsishs a
backend system that helps reason about game meshhis was
much more interface heavy. This “interface-in” etlthan “me-
chanics-out” design style led to a number of degigestions,
such as questions about player perception andtiatiethat are
difficult for an automated reasoning system to arsw

In addition, that designer, perhaps not coincidgnthad a much
more interface-in view of what our tool should dte was most
interested in the possibility of a storyboardingltéor game de-
signers to be able to use to quickly sketch andalize designs,
with a visual design language and sets of builténabulary for
common design domains. This leads to an interegtiogosal for
what the game-design equivalent of a CAD tool'sn8uteling is:
not sketching of the game&ppearancen a superficial sense, but
sketching of the game’s interconnected processdsements.
Methodologically, this designer also disagreed with backend-
first approach: He had some interest in automag@ganing, but
mostly thought of it as a possible next step tosater after we
first built a visual modeling tool, which might ment opportuni-
ties to hang automated reasoning off of some afidgets.

For backend reasoning, we found it useful to framest sug-
gested queries in terms of simulation. Our inidtempts to fol-
low the logical-reasoning literature’s conceptygalits into simu-
lation, planning, abduction, and so on, mostly tedconfusion
about what the tool could do. For example, plannirg finding a
sequence of player actions that would cause acpéatioutcome,
is conceptually a form of directed simulation: fiadsimulation
run that has a particular outcome, and then se¢ dppened in
it. These sorts of metaphors led to a good deattefest in how
the system could do reasoning more complicated #tandard
simulation, such as “backwards” reasoning to firithtathe largest
or smallest value of some parameter would havestlresult in
a particular outcome. An interesting technique thateloped in
several of the prototypes was using different daestto isolate
different causes of outcomes. For example, stickifth a fixed
player model and asking if a particular situatisqpossible gets at
to the role world conditions play in possible outes; fixing
world conditions and asking if a player can achianeoutcome
gets at whether a particular kind of gameplay @zample, a
player exploiting a design flaw) could cause arconrte.

One complication is that many questions that iliytiasound ob-
jective turn out to have subjective components.esigher who
wants to know if there are multiple ways to achieeenething
usually means multipleneaningfully differentvays. A significant
line of future work will be on finding ways to mdpese fuzzier
kinds of design questions to more black and whitestjons that
can be answered by logical reasoning. More congreteany
design questions envision games with some randesnaesl are
interested in frequency of outcomes, which is tiadally not

something well supported by logical reasoning; efeme, a way
to reason about nondeterminism will be needed.

This question-answering approach was most useftiidrdesigns
somewhat further along, which could be seerteasing design
ideas, rather than at the stage of trying to inu@em. In the
brainstorming stage, one of the case studies @a)d it more
useful to go to a very abstract model of the gaha temoved
most of the literal mechanics, and preferred tomeee of a vis-
ual modeling way of thinking about the design. Tiker (#3),
seemed to still be interested in more of a meckasiimulation
approach, but wanted a tool with a reasonably frearely inter-
face that could be used without us present toyr@atibgrate it into
a brainstorming process.

An interesting possibility raised by this split ween exploratory
prototyping, which looks for possible design goalad testing-
type prototyping, which checks whether particulaopgmsed de-
signs have those goals, is a regression test feigmlelf design
goals identified in the exploratory phase are nateeh during the
testing phase, a series of regression tests cannb® make sure
the design goals haven’t been broken by recentgggammuch as
in software engineering regression tests checle®ikprevious
bugs were reopened by new modifications.

One feature that designers rarely found interestiveg we had
thought might be useful was querying for elemerfta @esign
that meet some criterion; for example, show allhaies that could
be the first enemy encountered, or all squarepltneer can reach
without jumping. One hypothesis (besides the pdigilthat it
just isn’t a useful mode of inquiry) is that suaheges would be
most naturally posed in a graphical informationzaiszation
manner, rather than literally as queries returrangst of results;
for example, setting filters in a visual repres@ntaof a game to
color-code objects that meet a particular propeAy.query
mechanism would also be useful in a system thagsiyates
design suggestions, since bits of proposed desmridaneed to
find parts of the existing design to which theagplicable.

Games with separate components that can be pretbtgppa-
rately lead to considerably different design preessfrom those
that have a more unified core mechanic. In NARP@iclv was

built around a central mechanic, much of the pyguioig was of
the testing sort, and there was little desire fdsudt-in design

vocabulary: the design innovations were in the coeehanic, and
the vocabulary from existing games that it does(sseh as bat-
tles and an inventory system) is easy enough ®mtsigners to
think about without. In the RTS, by contrast, thesigner wasn't
particularly focused on economy design by inclio@atiso would
have found some prompting on how to think aboutnentes

useful. In addition, separate prototypes lead &stjans of how to
integrate the different components into the coneplgame. A
regression-testing approach may prove useful tfeeme to make
sure changing something in the economy doesn’kisemething
in the combat), but none of the designs had advhtwé¢he inte-
gration stage during our study.

Finally, the direction proposed by domain-orientisbign envi-
ronments and especially metadesign [10] mappedtaelbme of
the design issues we encountered. Game-design wmacghs a
mixture of existing terms inherited from previouames (e.g.
RTS-design vocabulary) and novel ideas. Thus desigmay
want the ability to design higher-level abstracsidhan the state
and state-evolution rules at which our tool (antbalcgame im-
plementations) currently works, and to import ergtrepresenta-

tions where they exist. For example, our second sasdy would
have found it useful to have his thinking promplbgch toolbox of
off-the-shelf RTS design vocabulary.

7. FUTURE WORK

The immediate future work is to build more fullynfttional proto-
types implementing the requirements collected HEne. backend
work involves integrating probabilistic reasoningdalogical in-
duction into the framework we currently have, plark on com-
putational tractability to allow the system to bged frequently
and on large problems. There are, equally impdgtantany in-
terface questions. How should a designer repredesign goals,
partial designs, and so on? How should they queeyslystem?
Should the system have built-in common design efesneand
how should designers specify free-form mechanicdaty/ the
balance between a visual design language and pnogireg to
add arbitrarily complex new mechanics to the sy8tem

A first step on the interface could be fixing aigasand backend,
and building a user-friendly interface solely foetquery facility,

to allow designers in the brainstorming phase teract with the
system in a tighter loop. Further on, designer$ méed ways of
inputting, modifying, and building representatioanguage for
their designs, which involves potential work on thiyg from

domain-specific languages for specifying mechanizsvisual

design languages for interactive design sketching.

Apart from the specific mechanics-reasoning toolreveuilding,
there are many avenues for future work in builditiger design-
assistant tools. A tool along the lines suggestgdilr second
case study, providing a sort of storyboarding-famg-mechanics
environment, would likely be useful to a numberdafsigners.
Tools focused on assisting novice game desighas lahve a
large potential audience, and likely have differamfuirements.

8. ACKNOWLEDGMENTS

Many thanks to the game designers who generouslg tfzeir
time to meet with us, including Josiah Pisciottandr Chronic
Logic and Chaim Gingold. Thanks also to Intel fonding.

9. REFERENCES

[1] Adams, E. and Rollings, A. 200Fundamentals of Game
Design Prentice Hall.

[2] Church, D. 1999. Formal abstract design to@sme Devel-
oper (August 1999).

[3] Coons, S.A. 1967. Surfaces for computer-aided desfig
space forms. Technical Report TR-41, Massachulsettis
tute of Technology.

[4] Crawford, C. 2003Chris Crawford on Game Desighew
Riders.

[5] Fischer, G. 1994. Domain-oriented design envirortsen
Automated Software Engineeria@). 177-203.

[6] Fischer, G. 1998. Seeding, evolutionary growth masged-
ing: Constructing, capturing, and evolving knowledg do-
main-oriented design environmenfaitomated Software En-
gineering5(4): 447-464.

[7] Fischer, G., McCall, R., and Morch, A. 1989. Desigwi-
ronments for constructive and argumentative de$goc.
Human Factors in Computing Systems (GR2§9-275.

[8] Fullerton, T. 2008Game Design Workshd@nd ed.). Mor-
gan Kaufmann.

[9] Gero, J.S. 1986. An overview of knowledge engimegand
its relevance to CAADProc. CAAD Futures 19834.07-119.

[10] Giaccardi, E. and Fischer, G. 2008. Creativity andlution:
A metadesign perspectivBigital Creativity 19(1): 19-32.

[11] Hewitt, C. 1985. The challenge of open systelRyse10(4):
223-242.

[12] Hunicke, R., LeBlanc, M., and Zubek, R. 2004. MDA:
formal approach to game design and game reseafatking
Notes of the Challenges in Game Al Workshop at 2884

[13] Lawson, B.R. 2002. CAD and creativity: Does the pater
really helpLeonardo35(3): 327-331.

[14] Lawson, B.R. 2005. Oracles, draughtsmen, and agEmes
nature of knowledge and creativity in design arerthle of
IT. Automation in Constructioh4(3): 383-391.

[15] Lawson, B.R. and Loke, S.M. 1997. Computers, wairtts
pictures.Design Studie$8(2): 171-183.

[16] Nelson, M.J. and Mateas, M. 2008. An interactivenga
design assistan®roc. Intelligent User Interfaces (IUIP0-
98.

[17] Nelson, M.J. and Mateas, M. 2008. Recombinable game
mechanics for automated design supgdérbc. Artificial In-
telligence and Interactive Digital EntertainmentI(E), 84-
89.

[18] Palmiter, S., Lynch, G., Lewis, S., and Stempski,1804.

Breaking away from the conventional usability IBlehav-
iour & Information Technology3(1-2): 128-131.

[19] Price, G.R. 1956. How to speed up inventiBortune maga-
zine(November 1956), 150-228.

[20] Reintjes, J.FINumerical Control: Making a New Technology
Oxford University Press, 1991.

[21] Riley, J.P. and Lawson, B.R. 1982. RODIN: A syst&#fm
modeling three dimensional roof forni&roc. CAD 1982

[22] Ross, D.T. 1956. Gestalt programming: A new conaept
automatic programmingproc. Western Joint Computer Con-
f., 5-10. Summarized with commentary in [23].

[23] Ross, D.T. 1986. A personal view of the personakveta-
tion: Some firsts in the fiftieroc. History of Personal
Workstations19-48.

[24] Salen, K. and Zimmerman, E. 20Rules of PlayMIT
Press.

[25] Schon, D.A. 1983The Reflective PractitioneBasic Books.

[26] Schon, D.A. 1992. Designing as reflective convéosatvith
the materials of a design situatid®esearch in Engineering
Design3: 131-147.

[27] Sutherland, I.E. 196%ketchpad: A man-machine graphical
communication syster®hD thesis, Massachusetts Institute
of Technology.

[28] Weisbherg, D.E. 2008 he Engineering Design Revolution
CadHistory.net.

[29] Wixon, D., Holtzblatt, K, and Knox, S. 1990. Contiexi
design: An emergent view of system desigroc. Human
Factors in Computing Systems (CH3R9-336.

