
Centrifuge: A Visual Tool for Authoring Sifting Patterns for Character-Based
Simulationist Story Worlds

Shi Johnson-Bey, Michael Mateas
University of California Santa Cruz
{shijbey, mmateas}@ucsc.edu

Abstract

Finding characters and events of interest in a large story
world with possibly hundreds of characters can be chal-
lenging. Story sifting is the method of sorting through
a story world’s data to find the desired content. Until
now, this process has mainly required someone to use
text-based programming or query languages. However,
this may prohibit those who prefer a more visual expe-
rience when story sifting. We present preliminary work
on Centrifuge, a proof-of-concept graphical editing tool
that enables users to query a character-based simulated
story world for narratively intriguing groupings of char-
acters, character relationships, events, and other entities.
Our system presents users with various nodes represent-
ing entities in the simulated world or components of the
underlying query language’s syntax. Users may author
queries by dropping nodes onto the canvas and dragging
connections between nodes. Then Centrifuge is respon-
sible for translating their configuration of nodes into a
valid query that looks for matching patterns in a sim-
ulation data database. Query patterns are meant to be
reusable and allow users to hierarchically build new pat-
terns from preexisting ones.

Introduction
Character-based story worlds use interactions between vir-
tual characters to produce engaging stories for players to en-
joy. And a story world is considered simulationist if relies on
the bottom-up interactions between autonomous non-player
characters for content generation. On the spectrum of narra-
tive generation systems, these story worlds depend heavily
on character autonomy, with the goal being to have captivat-
ing series of events, or character relationships, emerge or-
ganically from the interactions of various subsystems (Riedl
and Bulitko 2013). These emergent occurrences are called
emergent narratives, and they feel like authentic events hap-
pening within the story world because they arise naturally in
the system instead of via explicit scripted logic (Ryan 2018).

Relying purely on subsystem interactions to produce valu-
able narrative content can be risky. It assumes that whoever
engages with the story world will discover the desired con-
tent in a sea of other simultaneous events. This assumption

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

may not be a problem for simulations with relatively few
characters, but for simulations that have on the order of tens
to hundreds, the chances of a player being at the right place
when an interesting scenario occurs are slim. However, there
are solutions to this. One solution is to use narrative planners
to ensure interesting, believable, and coherent events occur
around the player (Riedl and Young 2010). Another solu-
tion and the one at the center of this project is story sifting.
Story sifting is the process of finding engaging narratives,
including narratively interesting characters and sequences
of events, out of a sea of simulated history (Ryan 2018;
Kreminski, Dickinson, and Wardrip-Fruin 2019). It is one of
four proposed open design challenges for interactive emer-
gent narrative (Ryan, Mateas, and Wardrip-Fruin 2015).

At the moment, there is very little in the literature di-
rectly addressing story sifting. Story sifting applications
have ranged from manual live-coding (Samuel et al. 2016),
to procedural pattern matching (Ryan 2018), to query
language-based co-creativity tools (Kreminski, Dickinson,
and Wardrip-Fruin 2019). While effective, each of these so-
lutions required that the user have experience programming
with a general-purpose language or a domain-specific lan-
guage. In the case of Bad News (Samuel et al. 2016), the
wizard player needed to have intimate knowledge of the un-
derlying simulation code to navigate the space of simulated
content. These projects effectively employed story sifting,
but their approaches could be prohibitive to those with little
or no programming background. Therefore, we wanted to
make a visual authoring tool to enable users to craft sifting
patterns without programming language syntax or knowl-
edge of simulation-specific code structure.

Visual programming tools are a popular solution for
teaching programming principles and providing users with a
less technical alternative for coding. Languages like Scratch
make programming and computational thinking more ac-
cessible to people who want to learn without opening the
flood gates of syntax errors, and other programming-related
woes (Fesakis and Serafeim 2009; Aivaloglou and Hermans
2016). Moreover, popular game engines such as Unity, Un-
real Engine, and CryEngine provide visual programming
workflows as an alternative to programming in C#, C++, or
various computer graphics shader languages.

Our tool, Centrifuge, is a work-in-progress graphical sift-
ing pattern editing tool explicitly tailored for character-



based simulationist story worlds. Our system presents users
with various nodes and a drag-and-drop interface to con-
struct arbitrarily complex sifting patterns without writing the
sifting code manually. Behind the scenes, Centrifuge com-
piles patterns into a lower-level logic-based query language.
So, users have the power to query a story world for nar-
ratively intriguing groupings of characters, character rela-
tionships, events, and other entities. Our goal is to create a
tool that allows someone without programming experience
to find narratively intriguing scenarios in a simulated story-
world with potentially hundreds of characters.

In this paper, we present our journey thus far with im-
plementing our sifting pattern editor. We briefly overview
the underlying query language, describe the tool, our pattern
nodes, and how they connect to produce queries. Then we
describe our case study implementing the editor to sift con-
tent from the Talk of the Town social simulation, the same
simulation the underlies Bad News (Samuel et al. 2016). Fi-
nally, we discuss lessons learned, plans for the future, and
potential impacts for a tool like this.

Related Work
Emergent Narrative (EN) has an extensive history. Aylett
played an early role in defining EN (Aylett 1999) and for-
malizing it in various character-based systems (Aylett et al.
2005; 2006). ENs are one of the core pleasures of games that
use social simulation as a core mechanic. Commercial exam-
ples of social simulations include The Sims, Dwarf Fortress,
and Blood & Laurels (which used the Versu system (Evans
and Short 2013)). Academic examples of social simulation
systems and partnering media experiences include Talk of
the Town (Ryan et al. 2015) and Bad News (Samuel et al.
2016), and Comme il Faut (McCoy et al. 2011) and Prom
Week (McCoy et al. 2012).

Complementary to the implementation of emergent nar-
rative systems have been efforts to sift for narrative patterns
and characterize ENs. Existing examples of story sifting pat-
tern tools include Felt (Kreminski, Dickinson, and Wardrip-
Fruin 2019) and its application to the narrative co-authoring
experience Why Are We Like This? (Kreminski et al. 2020).
In the game Bad News, one player must surface simulation
information to the actor by using the “wizard console” to
perform manual story sifting via live Python coding. Simi-
larly Sheldon County (Ryan 2018) used procedural python
code to perform narrative pattern matching when construct-
ing Podcasts from in-simulation events.

Our pattern editor also builds on past efforts toward mak-
ing query languages and logic programming more accessi-
ble to general audiences. An early example of visual logic
programming is (Ladret and Rueher 1991)’s work on creat-
ing VLP, a visual logic programming interface for Prolog.
(Banyasad and Cox 2001; 2013) presented a visual logic
programming language called Lograph. Their main goal was
to contribute to the availability of tools for assisting de-
sign engineering efforts. Along these same lines, (Febbraro,
Reale, and Ricca 2010) developed a graphical interface for
writing answer-set programming (ASP) programs. Visual
database query interfaces saw early work on end-user ac-
cessibility with Query-By-Example (QBE). QBE, created by

[:find ?person :in $ % :where [?person "sim/
type" "person"]]

Listing 1: This basic query returns an array of entity
identifiers for all entities with a “sim/type” attribute equal
to “person.”

Moshé M. Zloof, was the first visual database query lan-
guage (PRESS 1975; Johnson 1999). More contemporary
work includes (Vargas et al. 2019)’s implementation of RDF
Explorer for querying graph-based databases. Visual pro-
gramming languages are popular solutions for programming
education. Our work builds on these approaches by present-
ing designers with a visual node-based interface to author
narrative patterns compiled into a query language.

Background: Query Language Overview
Our tool translates the node-based sifting patterns into a
textual queries used with a database/query language called
DataScript1. It is an open-source in-memory database so-
lution and Datalog query engine, and has been used in
other story sifting projects, namely Felt (Kreminski, Dick-
inson, and Wardrip-Fruin 2019) and Why Are We Like This
(Kreminski et al. 2020). The following is a summary of
DataScript’s query syntax with examples. Our goal is to
support as much of the DataScript syntax as necessary.
As of this writing, Centrifuge supports most of the basic
DataScript syntax needed to create moderately complex pat-
terns. We cover mainly the parts of syntax relevant to our
purposes.

DataScript databases are sets of immutable facts called
datoms. Datoms are EAVT four-tuples containing the fol-
lowing:
• An entity ID (E)
• An attribute name (A)
• A value for the attribute (V)
• A transaction ID (T)

An entity in the database is the set of datoms that all re-
fer to the same entity ID (E). Our case study stores sim-
ulated objects such as people, businesses, and events as
DataScript entities. An example entity is given in table
1. Datom attribute values can be simple values (numbers,
strings, boolean), JavaScript objects, or references to other
entities in the database. Along with datoms, DataScript also
uses optional schemas that allow users to specify the types
of data associated with certain attributes. Users may specify
the data types, cardinality (does the attribute map to a single
or an array of values), and if the attribute may be used as
alternative unique identifier for entities.

Once a database has entries, users may take advantage
of its query language to find matching datoms and entities.
Listing 1 shows a basic query containing the major sections
that we use in this project. The first section is the find-spec
where users define which variables should be returned by

1https://github.com/tonsky/datascript



E A V T
56 “sim/type” “person” 1234
56 “person/name” “Korra” 1234
56 “person/age” 21 1234
56 “person/occupation” :23 1234
23 “sim/type” “occupation” 5678
23 “occupation/name” “Avatar” 5678

Table 1: Example DataScript database containing two en-
tities and a total of six datoms. The colon in “:23” distin-
guishes this value as a reference to another entity instead of
it being a numerical value.

the query. The find spec starts with the keyword, :find and
is followed by one or more variable names. Variable names
have to start with the ‘?’ character and may be bound to
entity IDs, attribute values, or the results of some query
functions. The next major section of the query is the inputs
section, indicated by the :in keyword. This section remains
static for all of our queries, but the ‘$’ and ‘%’ are impor-
tant built-in variables that map to the default database input
and specified query rules, respectively. The ‘$’ is implicit
in the query syntax and can mostly be ignored unless do-
ing a more complicated operation using multiple database
instances. The rule variable,‘%’, lets DataScript know we
plan to use query rules. We discuss query rules in a later
section as they are how we encapsulate sifting patterns to be
hierarchical and reusable. Finally, there is the where-clauses
portion, indicated by the :where keyword, that contains all
of the conditions for filtering results.

DataScript Where Clauses
The most simple where clause is made up of three parts,
an entity ID, attribute name, and attribute value. Listing 1
shows a where clause that bind the entity ID to the ?per-
son variable and tries to find a datom with an attribute name
“sim/type” and value “person”. Each part of this type of
where clause may be a constant or a variable. Variables are
case sensitive and so ?person 0 is different from ?Person 0.
All the variables in where clauses implicitly join and unify
to the same value. Where clauses may also take the form of
range predicates (<,>, 6=,≤,≥), logical and/not/or clauses,
logical not-join/or-join clauses, query functions, and query
rules.

Range Predicates Range predicates check if given values
pass a specified inequality/equality operation. Range pred-
icates accept both variables and constants. Out tool makes
heavy use of these for filtering. Listing 2 shows a query
checking if a character is a given age.

Logical Clauses Logical clauses wrap other where clauses
inside a logical and/not/or operation, changing how the in-
ternal clauses relate to the external where clauses. By default
all clauses are implicitly and-joined, but not and or allow for
additional complexity.

Logical join syntax is not fully supported by our tool, but
it is used heavily in other projects such as Felt (Kreminski,

[:find ?person
:in

$ %
:where
[?person "person/age" ?age]
[(< ?age 45)]

]

Listing 2: This query returns an array of entity identifiers for
all entities with a “person/age” attribute less than 45.

(and [?person "person/gender" "female"]
[?person "person/college_graduate" true

])
...

(not [?person "person/gender" "female"]
[?person "person/college_graduate" true

])
...

(or [?person "person/gender" "female"]
[?person "person/college_graduate" true

])
...

Listing 3: Examples of and/not/or where clause syntax. Each
keyword encapsulates other where clauses and modifies the
output accordingly.

Dickinson, and Wardrip-Fruin 2019). These operate iden-
tically to their non-join versions. However, one can spec-
ify which variables within the clause need to unify with the
greater surrounding clause. See Listing 4

[:find ?person
:in

$ %
:where
[?person "sim/type" "person"]
(not-join [?person]

[?friend "person/friends" ?person]
[?friend "person/tags" "villain"])

]

Listing 4: Query returning the an array of entity identifiers
for all person entities who do not have a friend who is tagged
as a villain.

Query Functions Query functions (See Listing 5) ac-
cept variables and constants as parameters, run a piece
of JavaScript/ClojureScript code and bind the result to a
variable. They have a similar syntax to predicate clauses,
but they accept an additional parameter placed outside the
parentheses.

[:find ?person
:in

$ %
:where
[?person "person/friend" ?friend]



[(count ?friend) ?friend_count]
[(> ?friend_count 10)]

]

Listing 5: Query returning an array of all people who have
more than ten friends. Here count is a function that accepts
a single parameter and returns the number of unique times
?friend is matched. This query assumes that “person/friend”
was specified as having a cardinality/many in the schema.

Query Rules Finally, there are query rules which are
pre-authored groupings of where clauses passed into a
DataScript query via the ‘%’ character in the input section of
the query. Rules are given names and may be defined mul-
tiple times. All instances of a rule must accept the same pa-
rameters, and during query-time, all versions must be satis-
fied for the result to pass as valid. This procedure is similar
to other logic programming languages such as Prolog.

[(farmer_with_big_family [?person]
[?person "person/occupation" ?occupation
]
[?occupation "occupation/name" "Farmer"]
[?person "person/family/kids" ?kid]
[(count ?kid)] ?kid_count)
[(> ?kid_count 4)]

]

Listing 6: Example query rule testing if the person is a
farmer with a large family label

System Implementation
Our tool is a cross-platform desktop editor application where
users author DataScript-based sifting patterns using inter-
connected nodes. Users can create new patterns, save pat-
terns, and open/edit multiple patterns at once. The core fea-
ture of the graphical user interface (GUI) is the node can-
vas, where users add/remove nodes from their patterns, re-
arrange nodes, and drag connections between nodes. When
users want to make more complicated patterns, they may
organize them into a workspace directory and open the di-
rectory within Centrifuge’s workspace explorer. Centrifuge
then compiles the existing pattern files and uses them to cre-
ate custom query rule nodes. These query rule nodes are de-
signed to add reusability to the editing experience and sim-
plify the visual space by abstracting logic behind a single
node.

Centrifuge’s purpose is to assist users in constructing sift-
ing patterns by abstracting away the text-based syntax for
a graphical representation. The GUI draws inspiration from
Visual Studio Code, Unity’s Shader Graph, and Unreal En-
gine’s Blueprints. A screenshot of the GUI can be seen in
Figure 1.

Our node design is heavily influenced by DataScript’s
EAVT data model and query syntax. Each node has a set of
input/output ports where links connect specific bits of infor-
mation between nodes. Ports have associated types although
there is no type checking currently implemented in our sys-
tem. We split nodes into the following types:

Figure 1: Screenshot of the Centrifuge editor. Users drag and
drop node types from the right panel to the grey canvas in the
middle. The pattern displayed is a version of the “underdog”
or “rags-to-riches” story pattern where a person goes from a
lower socioeconomic status to a significantly higher one.

Node Types
Constant Nodes Our node design is heavily influenced
by DataScript’s EAVT data model and query syntax. Each
node has a set of input/output ports where links connect spe-
cific bits of information between nodes. Ports have associ-
ated types. However, there is no type-checking currently im-
plemented in our system. We split nodes into the following
types:

Entity Nodes Entity nodes represent a collection of re-
lated datoms in the database. They can represent objects in
the simulation, such as people, places, and events. These
nodes are the base for creating sifting patterns as they supply
the attribute values and are the objects that a query seeks to
find. Our tool creates database queries that return entity IDs
that can be used to extract all associated data at a future time.
Entity nodes do not accept incoming connections; they only
provide output connections to other nodes. Aside from a la-
bel, they have a collection of output ports, and each port is
associated with a different attribute of that entity type. Each
port has an associated type based on the data that is stored.
Right now, it is up to the person configuring the nodes to
explicitly define what type of port is associated with each
attribute. Ports can be mapped to one or more constant val-
ues or entity identifier references. Entity ports are unique
because they supply the connecting node with the variable
name bound to that attribute’s value.

Variable names in the query are based on the names as-
signed to the entity nodes. Entity nodes’ names are auto-
generated but can be modified by the user to improve clarity.
Derivative variable names such as those associated with an
attribute value are given a generated name which includes
the entity name as a prefix and the attribute name as a suffix.
For instance, a variable mapped to a person entity’s age will
have the following variable binding:

[?person_0 "person/age" ?person_0_age]

In this case, “age” is the attribute name. So, we append it to
the end of the variable name ?person 0 with an underscore.
All variable names in DataScript start with a question mark



(?), and we add this mark behind the scenes if not already
present.

Range Predicate (Inequality) Nodes Range predicate
nodes translate to DataScript’s range predicate syntax and
perform inequality/equality checks on two given inputs. In-
puts may be constant values or entity attributes. Range predi-
cate nodes are one of the core methods of filtering the results
of a query. They have a single output port for chaining their
resulting output inside other nodes — for example, chaining
a series of range predicates and logical nodes.

Functional Nodes Functional nodes represent pieces of
custom JavaScript code that handle some cases that the
DataScript API does not support. For example, cardinality
counting is not supported in the JavaScript version, and so
we wrote a count node that provides that functionality. In
our experience, functional nodes require hand-authoring as
they usually serve a particular purpose and will probably im-
plement functionality not provided by the query language.
Since they are made as needed, there is no set number of in-
put ports, but there should be only one output port that binds
a variable name for the function’s output.

Logical Nodes Logical nodes include NOT, AND, and
OR nodes. These nodes wrap the output of nodes passed to
them in their respective clauses. For example, the NOT node
will produce code where clauses from input connections are
wrapped in a “(not ...).”

There are also logical-join nodes that provide function-
ality for not-join and or-join syntax. These are two power-
ful operations that allow query designers to check for all in-
stances of outputs where a set of clauses in not the case, any
set of clauses could be the case. Logical join nodes encap-
sulate variables and let the user decide which ones should
unify with the greater query. In a later section, we present an
example using not-join with a sequence of events.

Query Rule Nodes Query rule nodes represent authored
patterns. They expose inputs specified by the sifting pat-
tern’s variable nodes and translate into DataScript clauses
of the form:

(rule_name ?var1 ?var2)

The user defines the rule’s name in the GUI, and the vari-
ables used in the rule header are specified using variable
nodes, which are explained next. Query rule nodes allow for
pattern reuse, and users can build more complex patterns us-
ing simpler patterns as building blocks. We are working on
a system to generate these using the intermediate JSON for-
mat to which sifting patterns are compiled.

Variable Nodes Finally, variable nodes are a special type
of node that defines how the pattern interacts at compile
time. Patterns may be used as query rules in other patterns,
or they may be the primary entry point for a query. The vari-
able nodes’ job is to determine which variables need to (A)
be returned by the query or (B) need to unify with the outer
context if it is used as a rule. Variable nodes only accept a
single input from an Entity node. Not all entity nodes need to
be attached to a variable node. Only those that are intended
to be output for the rule/query.

Pattern Compilation
A completed pattern is essentially a dependency graph be-
tween components of information needed to form a query.
The directed nature of links in our sifting patterns results in
a directed acyclic graph with information flowing from the
left to the right. The compilation starts with running a topo-
logical sort to determine a processing order for nodes. Then
we convert each node to a text string using an associated
template. Nodes chain their string outputs to produce any
nested query structure. So when traversing the tree to pro-
duce the final query, only the leaf nodes’ output is included
in the final output. The compilation result is an intermediate
JSON format that allows the tool to convert patterns to either
full-queries or query rules referenced by a full query.

Case Study: Talk of the Town
We wanted to explore the process of tailoring Centrifuge
to an existing character-based social simulation, so we se-
lected Talk of the Town as a case study. Talk of the Town is
a character-based simulationist story generator that uses so-
cial simulation to simulate a virtual town and its townspeo-
ple over a 100+ year period(Ryan 2018; Ryan and Mateas
2019). Characters have families, homes, and relationships.
They also follow routines based on their occupations. We
chose Talk of the Town for our case study for the following
reasons. First, it is a sophisticated example of a character-
based, simulated story world. Second, the townspeople are
constantly creating a variety of life events. Third, the char-
acter interactions give rise to various emergent scenarios —
for example, rivalries, asymmetric friendships, and love tri-
angles. Talk of the Town has shown that its generated content
is interesting enough to support the award-winning AI-based
experience Bad News. In this section, describe our experi-
ence designing nodes to fit DataScript’s syntax and Talk of
the Town’s data models. This case study served both as an
experience in tailored configuration and iterative design.

We had to create a custom pipeline that transferred simu-
lation data from a Talk of the Town instance to a DataScript
database instance. Talk of the Town was not configured for
its simulation data to be exported or hooked into for exter-
nal analysis. So, we had to write a custom code module that
saved the state of the simulation out to file. We then loaded
the relevant data (events, people, businesses, relationships,
occupations) into a DataScript database instance. We also
defined a schema for the data, specifying which attributes
were mapped to multiple values and which attributes refer-
enced other entities in the database. DataScript’s data model
forced us to flatten the way we represented simulation enti-
ties. Nested objects had to be stored at the same level, and
entity references replaced where they once were in the data
hierarchy

While most node types work regardless of the simula-
tion, we needed custom entity nodes that reflected Talk of
the Town’s world model. Entities could be events, people,
businesses, relationships, occupations. Each of those entity
types has different attributes. Therefore was had to hand-
code the port configuration, types, and labels for each entity
type. Some entities, such as events, have dynamic attribute



ports based on the type of event. We hand-coded all of the
attribute ports and their associated labels (see Figure 2).

Talk of the Town-specific Nodes
Person Nodes Person nodes represent individual towns-
people. Users have access to all of a person’s attributes.
However, some attributes like familial and social connec-
tions are only available when using Person nodes in con-
junction with Social Connection nodes.

Figure 2: Person node in Centrifuge. Each output port on
the right side of the node corresponds to an attribute stored
in the database that users can use for filtering results.

Business Nodes Businesses are one of the core objects in
Talk of the Town. They drive population growth and decay
and are responsible for tragic story instances such as peo-
ple being evicted from their homes to build a new business.
When using business nodes, designers have the option to fil-
ter by a business type. Choosing to do so may also mod-
ify the attribute ports available on the business node. Some
businesses like Law Firms have unique attributes that we dy-
namically hide/show based on the selected business type.

Occupation Nodes Occupation nodes are entities that rep-
resent job roles that townspeople have held throughout their
lives. These nodes are essential for calculating a person’s tra-
jectory in their life. Occupations determine a person’s rou-
tine, social circle, and the growth/decay of their relation-
ships. So, they are a helpful tool when inspecting the social
aspects of characters’ lives. Occupation nodes also have a
type selector that dynamically changes some of the ports to
give unique options based on the selected type.

Event Nodes Event nodes represent recorded events that
have transpired in the simulation. They have timestamps and
associated characters that participated in the event. Event

nodes have an event type selection drop-down that dynami-
cally chances the output ports to match the information as-
sociated with this entity. Users can build queries that look
for sequences of events in the simulation and retrieve the
characters associated with those events.

Figure 3: General event node (left) and an event node with
its type set to Business Construction, revealing specialized
attribute ports.

Relationship Nodes Relationships between characters in
Talk of the Town are entities that gauge the amount of roman-
tic and platonic affinity one character has for another. Rela-
tionships in Talk of the Town are directed. Therefore, one
relationship entity only represents one character’s feelings
about another and does not represent the shared reciprocal
feelings. For one to sift for two characters’ feelings toward
each other requires two separate relationship nodes. Rela-
tionship nodes are separate from Social Connection nodes
because they provide quantitative values about relationships,
not just the semantic relationship.

Social Connection Nodes Since Talk of the Town is a so-
cial simulation, we need to have a node that represents social
connections between characters. Characters can be related
to each other in a multitude of ways. They can be friends,
enemies, family, coworkers, or some other social associa-
tion between characters. Social Connection nodes are one of
our special nodes and are helpful to designers when speci-
fying social or familial relationships between People nodes
in their pattern. For example, they can check if two people
are friends, family, enemies, married to one another, or some
other social arrangement. This node does not map to a spe-
cific entity but was made specifically for working with Talk
of the Town as it simplifies pattern representation.

Authoring Patterns
We tried authoring patterns based on those used with
Felt(Kreminski, Dickinson, and Wardrip-Fruin 2019). In fig-
ure 5 we demonstrate an example sifting pattern that looks
for a series of layoff events where the same character gets
laid-off from their job. The particular part is that a retirement
event must have occurred between these events. Ideally, this
sifting pattern would find a character who is ”down on their
luck” and constantly gets fired from their various jobs.



Figure 4: Social Connection node with the “friends” connec-
tion selected. Users can click the drop-down to select from
many more types of character relationships.

This query is made possible thanks to the not-join node,
which finds instances of the layoff events and characters that
do not have an intermediate retirement event. If this same
pattern were implemented in python code, it would require
nesting for-loops over the sets of events and characters. The
final query, while not as succinct as one written by hand, is
still valid DataScript and could be fed into a running instance
containing Talk of the Town simulation data.

Discussion
Creating a custom pipeline for a specific story world requires
much hands-on coding with the underlying node-diagram li-
brary. Our experience thus far with adapting the sifting pat-
tern nodes to Talk of the Town has been tedious as we had
to write custom code to make the simulation data work with
the database and make the pattern nodes fit the simulation.
As we explained prior, importing Talk of the Town’s data
into the database required a custom pipeline that involved a
database schema and a procedure for replacing nested ob-
jects with DataScript entity references. The process is time-
consuming and is most likely prohibitive to anyone in the
industry planning to use this particular approach. However,
experiences/games that are built with DataScript in mind,
such as Why Are We Like This? (Kreminski et al. 2020),
may have a more effortless experience. Future iterations of
this project could benefit from a domain-specific configu-
ration language that simplifies the node authoring process.
Perhaps something like JSON schema could facilitate both
data conversion and node generation.

The concept of having a more designer-friendly tool that
houses a repository of sifting patterns is exciting. We imag-
ine using sifting patterns to analyze the frequency of desired
pieces of content appearing in their story worlds. The sifting
patterns would help a world designer characterize the gen-
erative space of emergent narratives in their simulation. Ex-
pressive range analysis (ERA) is vital for evaluating proce-
dural content generation (PCG) systems (Smith and White-
head 2010). ERA requires that designers define metrics to
evaluate the output of a generative system. For narrative sim-
ulations that rely on emergent narratives, ERA is essential
because, during any given play-through, there is no guaran-
tee that there will be appropriately intriguing content for the
end-user.

Moreover, there is no guarantee that the content will sat-

isfy the designer’s aesthetic goals. However, with proper
analysis, designers may better understand the potential dis-
tribution of content, better understand the inner workings of
the generator, and adjust the configuration of the simulation
to fit their goals. However, before we can reach that state,
designers need better tools to query the narrative output of
their simulators. This tool would help in that effort.

Conclusion and Future Work
In this paper, We describe our preliminary work on devel-
oping a sifting pattern editing tool. We also described our
experience adapting it for Talk of the Town. The project is
still in progress, but it does provide an example of what a
visual sifting pattern language could look like. Users can au-
thor patterns and see their query-language equivalent with-
out needing to know any DataScript. Not all of the fea-
tures that we planned are currently available as of this writ-
ing. Specifically, pattern re-use is an important feature that
we believe will help users write more complex patterns
without being overwhelmed by the multitude of nodes and
links. Also, reusable patterns will add a level of modularity
that currently does not exist. In their concluding remarks,
Kreminski (Kreminski, Dickinson, and Wardrip-Fruin 2019)
mentions the potential for sifting pattern authors to become
overwhelmed with larger patterns. Perhaps the visual hierar-
chy created by our tool could help prevent that.

For now, our tool only works with a specific version of
Talk of the Town. Future work could investigate strategies
for specifying nodes in a configuration format like YAML
or JSON and auto-generate nodes used for authoring. The
current workflow involves creating all the associated code
for defining a new node type. This procedure is not friendly
to expanding this framework for other simulations. The ex-
perience with authoring nodes for specific simulations could
benefit from a higher-level configuration language that re-
moves the burden of extending the underlying APIs.

In the future, we would like to run further investigations
with this tool and perhaps get more qualitative feedback
from individuals who are asked to complete some author-
ing task using it. Observing how they author patterns for
structured tasks and free-form exploration would give us
a better sense of the expressivity of our tool and potential
areas of improvement. Suppose user tests demonstrate that
Centrifuge is more helpful than authoring sifting patterns in
code. In that case, more time should be invested in devel-
oper experience features such as better type checking be-
tween ports, error reporting, and query result presentation.

Currently, there is no interface for running the queries on
a database and visualizing the results. The presented ex-
perience feels incomplete without a way for users to in-
spect the entities that their sifting patterns find. Future work
will investigate intuitive designs for presenting the results of
queries produced by sifting patterns.

References
Aivaloglou, E., and Hermans, F. 2016. How kids code and
how we know: An exploratory study on the scratch reposi-



tory. In Proceedings of the 2016 ACM Conference on Inter-
national Computing Education Research, 53–61.
Aylett, R. S.; Louchart, S.; Dias, J.; Paiva, A.; and Vala, M.
2005. Fearnot!–an experiment in emergent narrative. In
International Workshop on Intelligent Virtual Agents, 305–
316. Springer.
Aylett, R.; Louchart, S.; Dias, J.; Paiva, A.; Vala, M.; Woods,
S.; and Hall, L. 2006. Unscripted narrative for affectively
driven characters. IEEE Computer Graphics and Applica-
tions 26(3):42–52.
Aylett, R. 1999. Narrative in virtual environments-towards
emergent narrative. In Proceedings of the AAAI fall sympo-
sium on narrative intelligence, 83–86.
Banyasad, O., and Cox, P. T. 2001. Implementing lograph.
Technical report, Report CS-2001-05, Faculty of Computer
Science, Dalhousie University.
Banyasad, O., and Cox, P. T. 2013. Design and implementa-
tion of an editor/interpreter for a visual logic programming
language. International Journal of Software Engineering
and Knowledge Engineering 23(06):801–838.
Evans, R., and Short, E. 2013. Versu—a simulationist sto-
rytelling system. IEEE Transactions on Computational In-
telligence and AI in Games 6(2):113–130.
Febbraro, O.; Reale, K.; and Ricca, F. 2010. A visual inter-
face for drawing asp programs. In CILC.
Fesakis, G., and Serafeim, K. 2009. Influence of the famil-
iarization with” scratch” on future teachers’ opinions and
attitudes about programming and ict in education. Acm
SIGCSE Bulletin 41(3):258–262.
Johnson, S. 1999. Query-by-example (qbe). Database Man-
agement Systems. New York, NY: McGraw-Hill Publisher.
Kreminski, M.; Dickinson, M.; Mateas, M.; and Wardrip-
Fruin, N. 2020. Why are we like this?: The ai architecture of
a co-creative storytelling game. In International Conference
on the Foundations of Digital Games, 1–4.
Kreminski, M.; Dickinson, M.; and Wardrip-Fruin, N. 2019.
Felt: a simple story sifter. In International Conference on
Interactive Digital Storytelling, 267–281. Springer.
Ladret, D., and Rueher, M. 1991. Vlp: a visual logic pro-
gramming language. Journal of Visual Languages & Com-
puting 2(2):163–188.
McCoy, J.; Treanor, M.; Samuel, B.; Wardrip-Fruin, N.; and
Mateas, M. 2011. Comme il faut: A system for authoring
playable social models. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence and Interactive Digital Enter-
tainment, volume 6.
McCoy, J.; Treanor, M.; Samuel, B.; Reed, A. A.; Wardrip-
Fruin, N.; and Mateas, M. 2012. Prom week. In Proceedings
of the International Conference on the Foundations of Digi-
tal Games, 235–237.
PRESS, A. 1975. Conference or the american federation of
information processing societies, inc.
Riedl, M. O., and Bulitko, V. 2013. Interactive narrative: An
intelligent systems approach. Ai Magazine 34(1):67–67.

Riedl, M. O., and Young, R. M. 2010. Narrative planning:
Balancing plot and character. Journal of Artificial Intelli-
gence Research 39:217–268.
Ryan, J., and Mateas, M. 2019. Simulating character knowl-
edge phenomena in talk of the town. In Game AI Pro 360.
CRC Press. 135–150.
Ryan, J.; Summerville, A.; Mateas, M.; and Wardrip-Fruin,
N. 2015. Toward characters who observe, tell, misremem-
ber, and lie. In Proceedings of the AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment,
volume 11.
Ryan, J. O.; Mateas, M.; and Wardrip-Fruin, N. 2015. Open
design challenges for interactive emergent narrative. In In-
ternational Conference on Interactive Digital Storytelling,
14–26. Springer.
Ryan, J. 2018. Curating simulated storyworlds. Ph.D. Dis-
sertation, UC Santa Cruz.
Samuel, B.; Ryan, J.; Summerville, A. J.; Mateas, M.; and
Wardrip-Fruin, N. 2016. Bad news: An experiment in com-
putationally assisted performance. In International Confer-
ence on Interactive Digital Storytelling, 108–120. Springer.
Smith, G., and Whitehead, J. 2010. Analyzing the expres-
sive range of a level generator. In Proceedings of the 2010
Workshop on Procedural Content Generation in Games, 1–
7.
Vargas, H.; Buil-Aranda, C.; Hogan, A.; and López, C. 2019.
Rdf explorer: A visual sparql query builder. In International
Semantic Web Conference, 647–663. Springer.



[
:find ?event0 ?event1
:in $ %
:where
[?event_0 "sim/type" "event"]
[?event_0 "event/subject" ?event_0_subject]
[?event_1 "sim/type" "event"]
[?event_1 "event/subject" ?event_1_subject]
[?person_0 "sim/type" "person"]
[?person_0 "person/id" ?person_0_id]
[(= ?event_0_subject ?person_0_id)]
[(= ?event_1_subject ?person_0_id)]
(not-join [?person_0 ?event_0 ?event_1]

[?event_2 "sim/type" "event"]
[?event_2 "event/subject" ?event_2_subject]
[?person_0 "person/id" ?person_0_id]
[(= ?event_2_subject ?person_0_id)]
[?event_0 "event/timestamp" ?event_0_timestamp]
[?event_1 "event/timestamp" ?event_1_timestamp]
[?event_2 "event/timestamp" ?event_2_timestamp]
[(< ?event_0_timestamp ?event_2_timestamp)]
[(< ?event_2_timestamp ?event_1_timestamp)])

]

Figure 5: An example query that looks for a sequence of Layoff events where the same character is laid off from a job without
any retirement events happening in that character’s life between the two layoff events. (Top) node representation. (bottom) The
resulting query syntax.


