An Integrated Agent for Playing Real-Time Strategy Games

Josh M£Coy and Michael M ateas

Expressive Intelligence Studio, University of Catifia Santa Cruz
1156 High Street
Santa Cruz, CA 95064
mccoyjo@soe.ucsc.edu, michaelm@soe.ucsc.edu

Abstract

We present a real-time strategy (RTS) game Al agfeatt
integrates multiple specialist components to plapm@plete
game. Based on an analysis of how skilled humayepa
conceptualize RTS gameplay, we partition the proble
space into domains of competence seen in exper@amum
play. This partitioning helps us to manage and take
advantage of the large amount of sophisticated doma
knowledge developed by human players. We presenttse
showing that incorporating expert high-level stgite
knowledge allows our agent to consistently defeat
established scripted Al players. In addition, tvsrk lays

the foundation to incorporate tactics and unit mucr
management techniques developed by both man and
machine.

I ntroduction

Real-time strategy (RTS) games provide a rich and
challenging domain for autonomous agent researcto(B
2003). The goal for players of RTS games sucheasviil-
known Warcraft and Starcraft series is to buildanmies
capable of defeating enemy bases, while simultasigou
defending one’s base against enemy attacks. Thectobj
and action complexity, combined with real-time rult
scale play, provide a uniquely challenging domaom f
game playing agents.

RTS games contain a large number of unique domain
objects and unique actions. Domain objects include
different types of mobile units, buildings with yarg
defensive and unit production capabilities, buitdin
modifications, and resources that must be gathered,
managed and spent in order to construct buildingd a
units. Actions include building and unit constroct;
choosing upgrades for buildings and units, resource
management, and employing unit capabilities dubatjle.
Action in an RTS occurs at multiple scale levelsstsas
high-level strategic decisions about which types of
buildings and units to produce, intermediate tattic
decisions about how to deploy groups of units actbe
map, and low-level micro-management decisions about
individual unit actions. The combinatorics of tsisace of
objects and actions precludes the use of gamestah-

Copyright © 2008, Association for the AdvancemeinAuificial
Intelligence (www.aaai.org). All rights reserved.

based techniques that have proven useful in boandeg
such as chess. To make matters more complex,
successful RTS player must engage in multiple,
simultaneous, real-time tasks. In the middle ofamg, a
player may typically be managing the defense and
production capacities of one or more bases whilage
simultaneously engaged in several battles. Find®yS
games often enforce incomplete information in thenf of

the “fog of war” that hides most of the map. Thaygr can
only see areas of the map where she has unitgriregthe
deployment of scout units to actively gather infation
about enemy activities.

These attributes of the domain argue for a garagimy
agent architecture that can incorporate human-level
decision making about multiple simultaneous task®ss
multiple levels of abstraction, and combine striteg
reasoning with real-time reactivity. In this papemr
present a novel agent architecture for playing R@Bes.
Our agent is decomposed into distinct competenitias
mirror the competency distinctions made by expearhéin
players, thus providing a framework for capturingda
expressing human-level strategic, tactical and anicr
management knowledge. Our results show that this
approach can provide a level of play able to defeat
static strategies that have been used as benchimatks
RTS research literature.

a

Related Work

Current research in game playing agents for RTSegam
has tended to focus on either the details of undran
management, or on high level strategy decisions|¢aae
tactics and micro-management to the built-in unit A
Although micro-management and strategy are cewtainl
two of the competencies required for RTS play, ftikire

to build integrated agents has resulted in agebls &
play only one small facet of the game or to noabk to
play the game at competitive levels.

A number of researchers have focused on applying a
single algorithm to a single facet of RTS game pMgnte
Carlo planning over unit micro-management scenarios
(Chung, Buro and Schaeffer 2005); PDDL used toanepl
the tactical decisions involved in building orders
(Kovarsky and Buro 2006); and RMDPs used to geizeral
strategic plans (Guestrin et al. 2003). While eatthese

systems provides local improvements, none are rated,
comprehensive agents capable of competently plaging
full game.

Evolutionary learning on tactical decisions using
dynamic scripting (Ponsen et al. 2006), and casetba
reasoning over human player traces (Ontafién &08I7)
both take the next step by being capable of plaginiye
games. However, they each use a single componedt to
strategic, and limited tactical, reasoning. Unitcroi
management is relegated to the simple-minded unit
behaviors in the game engine. Additionally, while tase-
based agent uses traces of human play to buildsa ca
library, the human players employed are weak coathto
professional RTS players. Our agent uses expert
knowledge gathered from professional players.

The SORTS agent is capable of playing an entire
standard RTS game, including the use of high level
strategy (Wintermute, Xu and Laird 2007). SORTS
includes algorithms based on human perception tm fo
unit groups and to focus attention. Unit micro-ngaraent
is handled in the middleware with the use of firstate
machines (FSMs). To enable a larger degree ofcticti
coordination between units, the FSMs that handiéisany
and resource gathering units are managed by global
coordinators. These coordinators employ simpleniegr
to enhance the efficiency of the agent. High lestedtegic
reasoning takes place in the Soar portion of th&RB®
agent. While SORTS is an impressive system capable
playing complete games, and integrating multiplelues,
improvements can still be made. Our agent addsiskeof
a reactive planning language capable of more tightl
coordinating asynchronous unit actions in unit mcr

mined information available on expert techniqued artes

of thumb (e.g. http://www.battle.net/war3/), as lwabk
expert commentary on championship games (e.g.
http://www.youtube.com/watch?v=IcPxulRkeRU), and
used this to determine the required competenciesuof
agent.

General rules of thumb have been distilled byekygert
player community. Getting “behind on economy” altnos
guarantees a loss at expert levels. Like any riiauwmb,
there are specific situations and strategies irclvttie rule
is violated. For example, the “Probe Stop” involtedting
economic expansion in favor of putting all avai@bl
income into military production, causing a tempgrspike
in military strength. Managing the economy (coliestand
consumption of resources) in order to maximize mass
production of military and production units is a jora
subtask of expert play.

Human-developed unit micro-management techniques
contain a subgroup that is applicable to nearly RS
games. One of the basic micro-management technigues
dancing. Dancing is a specific use of ranged unitghich
a group of units attacks simultaneously, then “éafc
back during their “cooldown”, the unit's recovergrpd
between attacks. This allows the ranged units taséar
away from the opposing units as possible duringrthe
cooldown period, without sacrificing offensive pimn.

Techniques such as dancing are called micro-
management because they involve controlling thailéeit
movements of individual units. In the absence ofrmi
management, units respond to high-level directigesh
as attack) using very simple built-in behaviors.cidi
management involves real-time decision-making oa th

management tasks, decomposes the agent into morepart of the player and is another major subtasthefRTS

distinct modules (domains of competence) and iredud
more expert human knowledge.

As we describe in this paper, strategic reasonig
fundamental to any agent whose goal is to compelti
play RTS games. Furthermore, we show that thera is
wealth of expert RTS knowledge that has yet to be
leveraged in RTS Al research.

Expert RTS Play

Expert RTS play is as deeply skillful as expertsshplay.
Expert players and RTS communities have developed
standard strategies, micro-management and tactical
techniques. As in chess, part of expert play ineslv
selecting techniques at multiple levels of abstoactin
response to recognized opponent strategies, taatics
micro-management, and improvising within these
techniques. But, as described in the introductitire
complexity of an RTS game (number of domain objects
parallel, asynchronous action, etc.) far exceegsshEven

the physical skill involved in RTS play is dauntjirexpert
human players routinely exceed 300 actions (distinc
interface manipulations) per minute. The best playeake
handsome livings as full-time professionals in RTS
leagues. In developing our integrated RTS playee, w

player.

Tactics entails unit deployment and grouping denis
Unlike micro-management, tactics involves coordimat
groups of units to perform specific tasks. One itact
commonly seen in the early game of Warcraft Il
(http://www.battle.net/war3/), involves coordinairunits
to block an enemy retreat, often using area et#atks or
blocking terrain bottlenecks with units. Tacticactsion
making, including a knowledge of common tactics and
counter-tactics, is a significant subtask for thpest RTS
player.

In RTS games, the map is only visible in a limitadius
around friendly units. This requires active recassance
to gather information about the location and at#ési of
enemy units. A common reconnaissance method early i
the game is to send a worker around the map totfied
enemy base. Base reconnaissance reveals the magres
nature of the economic build-up (revealing inforimat
about which strategies the enemy is likely follogjirand
the physical layout of the base (e.g. is the bagélhh
fortified against ground attacks). Reconnaissasdhiis a
significant subtask for the expert RTS player.

Finally, expert players develop and deploy higrele
strategies. Strategies coordinate the style of @mim
buildup, the base layout, and the offensive ancmsafe

Build and Train
commands

Request
Information

Construct
Farm

Gather

Construction

Military Units

Lumber Harvesting Townhall Barracks

Figure 1- This graph shows a small sample of the dependsnuianagers
have on one another. The blue boxes are managérsabbreviated nam:
(TM is tactics manager, RM is recon manager, etét the bottom of tt

graph are game entities found in War

style. The knight's rush is a strategy found in #aft II.
The knight is a heavy melee unit available in thddie of
the technology tree (the tree of dependencies legtwe
different unit and building types). In general RE®mS, a
knight’s rush is a heavy attack with units in thildhe of
the tech tree as soon as they are available. Wiith t
strategy, the economy is expanded as much as pmssib
while researching the technology and constructihg t
buildings necessary for knights, with little to nesource
spent on defensive units. This strategy leaves ayepl
vulnerable until the ability to create knights Istained, as
early defense is traded for later offensive power.

Human experts decide on a high-level strategy very
quickly at the beginning of the game, based onrinfdion
such as the map size and number of opponents.ifitiéd
strategy selection determines the initial productioder of
buildings and units. For example, a small map favar
push for early military units, as attacks comeieaih the
game. However, players must often switch strateaget
on information gained through reconnaissance. &fyat
determination, execution and switching is the lastjor
subtask of the expert RTS player. The subtaskstifabzh
in our analysis of human expert play inform the agers
of our integrated RTS agent.

Framework

The software framework of our agent consists of AB&
reactive planning language connected to the WaRJLS
engine.

ABL

ABL (A Behavior Language) is a reactive planning
language similar in flavor to belief-desire-intemti
architectures such as PRS (Georgeff and Lansky)1987
though an ABL program does not require a commitnient
a formal domain model. ABL serves as the glue for o

Opponeﬁt's Base

integrated agent. Different distinct competencies
in our agent, which can make use of distinct
problem solving techniques, communicate with
each other through ABL’s working memory, and
through ABL’s dynamic subgoaling mechanism.

ABL, based on the Oz project believable agent
language Hap (Bates, Loyall and Reilly 1992),
adds significant features to the original Hap
semantics, including first-class support for meta-
behaviors (behaviors that manipulate the runtime
state of other behaviors) and for joint intentions
across teams of multiple agents (Mateas and
Stern 2002).

Although ABL was originally designed to
support the creation of autonomous believable
characters, it has many features that work well in
the space of RTS Al. Playing an RTS game
requires the player to pay attention to many
facets of the game simultaneously, reacting
quickly and appropriately at multiple levels of
abstraction including strategy, tactics and unit
micro-management. Good RTS play requires a
combination of deliberative, planful activity aneai-time
responsiveness to changing game conditions. ABL was
precisely designed to combine reactive, parallebl go
pursuit with long-term planfulness.

Wargus

Wargus is a clone of the game Warcraft Il and its
expansion, Tides of Darkness, both of which were
developed by Blizzard Entertainment™. This clone is
rendered in the open source RTS game engine Sisatag
(Ponsen et al. 2005). The open source nature ofjifgar
allows integration with ABL and access to any parthe
game state that Wargus itself has access to.

Another beneficial quality of Wargus is that itshan
external Al scripting language, based on Lua, tglou
which new agents can be added and existing agantbe
modified. This scripting capability affords the atien and
importing of a range of Al scripts with which tosteour
agent.

Agent Architecture

Our agent is composed of distinct managers, eagfhizth
is responsible for performing one or more of thejama
subtasks identified in our analysis of human exjdai.
As seen in Figure 1, the agent consists of income,
production, tactics, recon, and strategy managers.

The first competency we have focused on is styatag
strategic competence is required to play a comgeataee.
Several of the other managers have been implemevited
just enough functionality to provide an interfacethe rest
of the managers comprising the agent. By factoong
agent based on the study of expert play, we are @bl
easily modify individual managers and study thesetffof
increased or decreased competence of a specifiagaan
on the overall strength of the agent.

Strategy Manager. The strategy manager is responsible
for high level strategic decisions. The manager is
composed of modules, which consist of behaviors
implementing rules and associated ABL working memor

elements.

The first task the strategy manager performs is to
determine the proper initial order in which to coust
buildings and units (the first 30 to 90 secondsgafme
play). The InitialStrategy module utilizes the reco
manager to determine the distance between the’'agaemt
opponent’s starting locations on the game map, gusin
thresholds to determine if the distance is smadiditm, or
large. Currently we use manually determined thrieshto
make this determination, though there is certaialy
opportunity for adaptation here. For small distanabe
initial strategy involves constructing barracks antitary
units before the construction of a second farms(tpport
more workers); this allows the agent to defend ragjai
early attacks, as well as potentially perform aryesttack,
at the cost of an economy that grows slightly nslosvly
at the beginning. For medium distances, the indiedtegy
maximizes economic production; for separated engmie
there is time to build a robust economy and a >
military force before engaging in battles. This diwes
creating new workers without pause during the egaliye,
and setting the default unit creation mix in thedarction
manager to one worker to one soldier (the produactio
manager will start creating soldiers when the pnéd@ns
for soldier creation, namely the construction dfaaracks,
have been fulfilled). Currently, for large distaace
InitialStrategy performs the same behavior as fedimm
distances. This distinction between large and mmadiu
distances will be useful when the recon manager is
sophisticated enough to determine suitable locationthe
construction of additional bases; for small and ined
distances, base attacks generally occur before thdime
to build additional bases.

The next module, TierStrategy, is the highest riigio
recurring task in the strategy manager. “Tier” ref® the
technology level achieved by the agent during enogao
production; different types of units become avddabs
new building types are constructed (there are preition
relationships between building types that forcdayqr to
build up through the tiers). At each of the thramstin
Wargus, TierStrategy responsibilities include neiming a
unit control cap with regards to production capagite.
construct the correct amount of farms), building
military/economic force superior to that of the oppnt,
and attacking when the agent has a military unmaathge.
Our agent currently has a large amount of knowlefdge
tier one strategy, a small amount for tier two, ama
knowledge for tier three. In future work, we willeb
expanding strategic competence for tier three,ghdhere
are no existing strong Al players we can test agjdior
tier three.

TierStrategy starts making decisions after thdiaini
building order controlled by InitialStrategy is cplate. A
primary responsibility for TierStrategy is determin

which buildings and units are to be produced at pwint

in the game past the initial build order. For tmre, the
agent grows economic and military unit production
capacity as quickly as possible. To this end, tredute
continuously trains workers until the agent corgral least
ten (unless InitialStrategy has primed the produncti
manager to produce soldiers early, in which caddieso
production is mixed in with worker production).

After the initial economic buildup, TierStrateggdins
production of military capacity. Two barracks and a
blacksmith are built sequentially after eight watkeare
available. After the first barracks has finishelde tagent
trains one soldier at the barracks for every newketwo
created. After all military production buildings ear
finished, the agent builds two soldiers for evergrier.
During all of this, TierStrategy monitors how maugits
can be supported given the current number of farms,
ordering the construction of new farms to support
increasing unit numbers.

At any time during tier one, three variations bkt
human developed “probe stop” strategy (in which all
production shifts to military units) can occur. éfttwenty
workers are created, the agent has enough income to
continuously build grunts from both barracks while
upgrading their offensive and defensive capacity the
blacksmith. At this point, only upgrades, soldiees)d
farms to support new soldiers are created. Addillgnif
the opponent has a lead of more than three militaits, a
probe stop is performed. When the agent has aidefic
more than two workers, the agent performs a revaisiee
stop; all military production is halted in favor cdmping
up resource gathering and production capacity.

As the game balance of Wargus is skewed towardyhea
melee units, the tier two production strategy issitmply
build a stables (the building which enables thestmction
of knights) and produce as many knights as possible

TierStrategy is also responsible for determinirtgew to
attack, given the number of military units contedllby the
agent vs. the opponent. This decision is curremtyle via
empirically determined static thresholds: a 3 unit
advantage in favor of the agent for tier one, Stier two,
and 8 for tier three.

Income Manager. The income manager is responsible for
the details of controlling workers who gather reses,
releasing workers for construction and repair tasksd
maintaining a gold to wood income ratio set bystrategy
manager.

The first action performed by the income manageoi
set the gold to wood income ratio given by thetstg
manager. After the ratio is set, the manager iergiv
workers, who have no assigned task, from the pitoamuc
manager. The newly assigned workers are placed in
resource list with regards to keeping the actudtl go
wood income ratio closest to that set by the gysate
manager.

The final responsibilities are to release workéos
construction tasks (requested by the productionagear)
and repair tasks (by either the production or tacti

manager) and to put workers on the appropriateureso agent would only be able to build four workers (@i

task if the strategy manager changes the incor rat would sit idly by the town hall) and do nothingels
Production Manager. The production manager is If the production manager was removed, the agent
responsible for constructing units and buildingg. tAe would have no facilities to produce new units oildings.
heart of the production manager are modules thaicge ~ This would result in the agent only being able se the
three priority queues: a unit production queueuddmg initial worker to either gather gold or lumber the length
production queue, and a queue for repeated cyélesip of the game.
training and building construction. By removing the recon manager, the agent wouldhav
Unit production pursues the training of the highes NO Way t0 Sense its opponents or its own UnNtHUIELS,
priority unit in the unit queue, ensuring that theare ~ and buildings, as well as have no knowledge ofrtia.
sufficient resources, and that the appropriate yrton The agent would not be able to perform any gamierzt
building is free (e.g. barracks for training sotdje With no tactics manager, the agent would not e &b
Building production pursues the construction of highest coordinate multiple units for attack or defense.l Al
priority building, appropriately locking construati economic and production tasks would proceed noymall

resources. This is necessary because simulatienpamses ~ Put the agent could never attack; it would keepualts at
between when the decision is made to build and kevo its starting location, and engage in uncoordinalefénsive

reaches the building location; without locking, cesces battles when opponents attack (using the Wargus-ibui
construction to fail. outcome one could hope for is a draw, brought orihey

opponent running out of resources.

The removal of the strategy manager would result i
agent capabilities similar to the removal of thedarction
manager. Due to the strategy manager making alhef
production and attack requests, the only actiopsaient
could perform would be the initial worker being daio
gather resources by the income manager. The tactics
manager could be used without the strategy mantger
manage individual battles, but only given thatiatibattle
conditions are set at the start of the simulation.

Tactics Manager. The tactics manager takes care of unit
tasks pertaining to multi-unit military conflictsChe tactics
manager has three modules. The first assigns ialam
units to a unit group. The tactics manager pravida
interface for high level control of the military itirgroup
for use by the strategy manager. All basic militamit
commands (attack, move, patrol, stand ground, ate)
made available to the strategy manager. More altstra
commands, like attacking the opponent’s base, &e a
made available. Keeping the military unit grouptask is
the responsibility of the second module. The fimaldule
removes slain units from the military unit group. Results

Recon Manager. As one of the managers that has Just 1 ahove section describes how the discrete camgies
enough functionality to properly interface with théher of the agent integrate to support the ability tayph

managers, the recon manager uses aggregate unltcomplete RTS game. In this section we provide eicgdir
information (number of military and worker units rpe

player) and perfect information. The tactical atctegy results that the integrated agent performs wellregawo

; . benchmark scripted Al opponents: the soldier’s yusid
managers request aggregate mform_atlon from thenrec the knight’'s rush. Our agent outperforms the bepbrted
manager. All academic and commercial RTS Als cilyen oo is"a0ainst these scripts. A soldier's rusholias
make use of perfect information. As we developrteon staying at technology tier one, building a largélemtion
manager, we will remove the assumption of perfect

information so that the recon manader must manaite of soldiers (weakest melee unit) and rushing thengn
: lon 9 u ags u base, presumably before they have had time to kaild
in reconnaissance tasks.

significant defensive force. The knight's rush ilves
building to technology tier two, building a numbef

Manager Interdependence knights, and attacking the enemy. Each script wsted on
) _)) _ two maps. The first map was of a medium size (9®®y
In this section we describe the relationship betwéee tiles) while the other was of a large size (128188 tiles).

managers, and how the individual manager competenci Both maps had clear land routes between our agbase
are integrated to play a complete game. We denaestr and that of the scripted opponent. Each map andrepp
this through thought experiments where we examitee t combination was played 15 times.

effects of removing individual managers. As seen in Table 1, our agent bests the soldrersh

If the income manager was removed, the agent would most of the time on both maps. From analysis of the

have no income and the production manager would be games, the lower win rate on the medium map wastalue
limited to using only the initial set of resources. having less time to prepare for the early and wsiattack
Furthermore, there would be no method for the pcodo characteristic of the soldier’s rush. The large raffprded

manager to acquire a worker for construction oraiep the agent more time to build military capacity whic
tasks. Under the default Wargus starting conditiche resulted in better defense from the rush.

Medium Map | Large Map| Both Maps
Soldier Rush 73% 86% 80%
Knight's Rush 60% 46% 53%

Table 1 — The percentage of games our agent woinstga
each scripted opponent on each map.

By winning over half of the games played agaim& t
knights’ rush, our agent has performed quite wall i
comparison to other Wargus agents. The knight's iigs
considered a “gold standard” of a difficult scrigte
opponent. Other agents have defeated the knighgk r
script, but have done so less frequently; our agemm
53% of the games against the knight's rush, while t
highest reported win rate in the literature is 1#6nsen et
al. 2005). Ponsen, in fact, hypothesizes that thight's
rush is an optimal Wargus strategy, as an explamdtr
why evolutionary learning plus dynamic scriptingrda
poorly against the knight's rush. Expert human etayon
the other hand, consider the knight's rush a fakyak
strategy, that they would only employ against g@iavith
insufficient reconnaissance. If you know a playsr i
performing a knight's rush, the counter-strategy tas
perform a soldiers rush; while the enemy is spandih
their economy on teching up to tier two, so thewy ca
produce knights, they are not building defensivecds,
making them vulnerable to a soldier’s rush. Thimigact
what our strategy manager does, if it recognizesetiemy
as performing a knight’s rush.

Many of the losses suffered by our agent weretdubke
lack of sophistication of the tactics manager. Spadly,
the tactics manager fails to concentrate militamitsuin an
area in either offensive or defensive situationkeWWmany
parallel decisions are being made elsewhere inagent,
small delays can be introduced in sending tactical
commands to individual units, causing units to kigc
towards engagements and be easily defeated. Futuie
in the tactics manager will focus on explicit fotina
management.

Conclusion

In this paper we have demonstrated an integrateshtag
capable of playing a complete RTS game. In contiast
other RTS agents in the literature, which have ¢entb
employ an individual component to address a siagfgect
of the game (e.g. reinforcement learning for tadtic
management of small battles) or an individual congu
applied uniformly across the whole game (e.g. ¢msed
retrieval of actions), our RTS agent employs mistip
managers, where the needed managers were iderjfiad
knowledge-level analysis of human expert play; the
managers are integrated using the ABL reactive n@an
As we continue to develop our agent, the integrated
modular architecture will allow us to strengthediudual
competencies, and experiment with different techesy
within different modules, while easily being abtetést the
effect on the global behavior of the agent. Fomeple, in
current work, we are integrating an HTN plannep itite

strategy manager to construct build orders, andingdd

behaviors to the tactics manager for formation
management and dancing.
References

Bates, J.; Loyall, A.B.; and Reilly, W.S. 1992 Igtating
Reactivity, Goals, and Emotion in a Broad Agent.
Proceedings of the Fourteenth Annual Conferencéhef
Cognitive Science Sociefgloomington, Indiana.

Buro, M. 2003. Real-time strategy games: A new Al
research challenge. IRroceedings of the International
Joint Conference on Atrtificial Intelligence (IJCA2003
pages 1534-1535. Morgan Kaufmann.

Chung, M.; Buro, M.; and Schaeffer, J. 2005. Modtelo
Planning in RTS Games, In Proceedings of the IEEE
Symposium on Computer Intelligence and Games,
Colchester, UK.

Georgeff, M.P. and Lansky, A.L. 1987. Reactive osdiisg
and planning. InProceedings of the Sixth National
Conference on Artificial Intelligence (AAAI-87pages
677-682, Seattle, WA.

Guestrin, C.; Koller, D.; Gearhart, C.; and Kanodi
2003. Generalizing plans to new environments iati@hal
MDPs. In International Joint Conference on Artéikci
Intelligence (1IJCAI-03).

Kovarsky, A. and Buro, M. 2006. A First Look at BRi#i
Order Optimization in Real-Time Strategy Games,
Proceedings of the GameOn Conference. 18-22.
Braunschweig, Germany.

Mateas, M. and Stern, A. 2002. A behavior langutge
story-based believable agent&EE Intelligent Systems,
17(4), 39-47.

Mateas, M. and Stern, A. 2003. Integrating plogrelter
and natural language processing in the interaaizama
Facadeln Proceedings of the Technologies for Interactive
Digital Storytelling and Entertainment (TIDSE),
Darmstadt, Germany.

Ontafién, S.; Mishra, K.; Sugandh, N.; and Ram, @072
Case-Based Planning and Execution for Real-Time
Strategy Games, Seventh International Conference on
Case-Based Reasoning.

Ponsen, M.J.V.; Mufioz-Avila, H.; Spronk, P.; andaiAh
D.W. 2005. Automatically Acquiring Domain Knowledge
For Adaptive Game Al Using Evolutionary Learning.
Proceedings of the Seventeenth Innovative Appbeoatiof
Artificial Intelligence Conference. AAAI Press.

Ponsen, M.J.V.; Mufioz-Avila, H.; Spronck, P.; antdaA
D.W. 2006. Automatically Generating Game Tactias vi
Evolutionary Learning. Al Magazine, Vol 27, pp. 88-
Tambe, M. 1997. Towards Flexible Teamwalkurnal of
Artificial Intelligence Researclir) 83-124.

Wintermute, S.; Xu, J.; and Laird, J.E. 2007. SORAS
Human-Level Approach to Real-Time Strategy Al
Proceedings of the Third Artificial Intelligence dan
Interactive Digital Entertainment Conference, Stadf
California.

