
An Integrated Agent for Playing Real-Time Strategy Games

Josh MCCoy and Michael Mateas

Expressive Intelligence Studio, University of California Santa Cruz
1156 High Street

Santa Cruz, CA 95064
mccoyjo@soe.ucsc.edu, michaelm@soe.ucsc.edu

Abstract
We present a real-time strategy (RTS) game AI agent that
integrates multiple specialist components to play a complete
game. Based on an analysis of how skilled human players
conceptualize RTS gameplay, we partition the problem
space into domains of competence seen in expert human
play. This partitioning helps us to manage and take
advantage of the large amount of sophisticated domain
knowledge developed by human players. We present results
showing that incorporating expert high-level strategic
knowledge allows our agent to consistently defeat
established scripted AI players. In addition, this work lays
the foundation to incorporate tactics and unit micro-
management techniques developed by both man and
machine.

Introduction

Real-time strategy (RTS) games provide a rich and
challenging domain for autonomous agent research (Buro
2003). The goal for players of RTS games such as the well-
known Warcraft and Starcraft series is to build up armies
capable of defeating enemy bases, while simultaneously
defending one’s base against enemy attacks. The object
and action complexity, combined with real-time multi-
scale play, provide a uniquely challenging domain for
game playing agents.
 RTS games contain a large number of unique domain
objects and unique actions. Domain objects include
different types of mobile units, buildings with varying
defensive and unit production capabilities, building
modifications, and resources that must be gathered,
managed and spent in order to construct buildings and
units. Actions include building and unit construction,
choosing upgrades for buildings and units, resource
management, and employing unit capabilities during battle.
Action in an RTS occurs at multiple scale levels, such as
high-level strategic decisions about which types of
buildings and units to produce, intermediate tactical
decisions about how to deploy groups of units across the
map, and low-level micro-management decisions about
individual unit actions. The combinatorics of this space of
objects and actions precludes the use of game tree search-

based techniques that have proven useful in board games
such as chess. To make matters more complex, a
successful RTS player must engage in multiple,
simultaneous, real-time tasks. In the middle of a game, a
player may typically be managing the defense and
production capacities of one or more bases while being
simultaneously engaged in several battles. Finally, RTS
games often enforce incomplete information in the form of
the “fog of war” that hides most of the map. The player can
only see areas of the map where she has units, requiring the
deployment of scout units to actively gather information
about enemy activities.
 These attributes of the domain argue for a game playing
agent architecture that can incorporate human-level
decision making about multiple simultaneous tasks across
multiple levels of abstraction, and combine strategic
reasoning with real-time reactivity. In this paper we
present a novel agent architecture for playing RTS games.
Our agent is decomposed into distinct competencies that
mirror the competency distinctions made by expert human
players, thus providing a framework for capturing and
expressing human-level strategic, tactical and micro-
management knowledge. Our results show that this
approach can provide a level of play able to defeat two
static strategies that have been used as benchmarks in the
RTS research literature.

Related Work

Current research in game playing agents for RTS games
has tended to focus on either the details of unit micro-
management, or on high level strategy decisions that leave
tactics and micro-management to the built-in unit AI.
Although micro-management and strategy are certainly
two of the competencies required for RTS play, the failure
to build integrated agents has resulted in agents able to
play only one small facet of the game or to not be able to
play the game at competitive levels.
 A number of researchers have focused on applying a
single algorithm to a single facet of RTS game play: Monte
Carlo planning over unit micro-management scenarios
(Chung, Buro and Schaeffer 2005); PDDL used to explore
the tactical decisions involved in building orders
(Kovarsky and Buro 2006); and RMDPs used to generalize
strategic plans (Guestrin et al. 2003). While each of these

——————————————————
Copyright © 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

systems provides local improvements, none are integrated,
comprehensive agents capable of competently playing a
full game.
 Evolutionary learning on tactical decisions using
dynamic scripting (Ponsen et al. 2006), and case-based
reasoning over human player traces (Ontañón et al. 2007)
both take the next step by being capable of playing entire
games. However, they each use a single component to do
strategic, and limited tactical, reasoning. Unit micro-
management is relegated to the simple-minded unit
behaviors in the game engine. Additionally, while the case-
based agent uses traces of human play to build a case
library, the human players employed are weak compared to
professional RTS players. Our agent uses expert
knowledge gathered from professional players.
 The SORTS agent is capable of playing an entire
standard RTS game, including the use of high level
strategy (Wintermute, Xu and Laird 2007). SORTS
includes algorithms based on human perception to form
unit groups and to focus attention. Unit micro-management
is handled in the middleware with the use of finite state
machines (FSMs). To enable a larger degree of tactical
coordination between units, the FSMs that handles military
and resource gathering units are managed by global
coordinators. These coordinators employ simple learning
to enhance the efficiency of the agent. High level strategic
reasoning takes place in the Soar portion of the SORTS
agent. While SORTS is an impressive system capable of
playing complete games, and integrating multiple modules,
improvements can still be made. Our agent adds the use of
a reactive planning language capable of more tightly
coordinating asynchronous unit actions in unit micro-
management tasks, decomposes the agent into more
distinct modules (domains of competence) and includes
more expert human knowledge.
 As we describe in this paper, strategic reasoning is
fundamental to any agent whose goal is to competitively
play RTS games. Furthermore, we show that there is a
wealth of expert RTS knowledge that has yet to be
leveraged in RTS AI research.

Expert RTS Play

Expert RTS play is as deeply skillful as expert chess play.
Expert players and RTS communities have developed
standard strategies, micro-management and tactical
techniques. As in chess, part of expert play involves
selecting techniques at multiple levels of abstraction in
response to recognized opponent strategies, tactics and
micro-management, and improvising within these
techniques. But, as described in the introduction, the
complexity of an RTS game (number of domain objects,
parallel, asynchronous action, etc.) far exceeds chess. Even
the physical skill involved in RTS play is daunting; expert
human players routinely exceed 300 actions (distinct
interface manipulations) per minute. The best players make
handsome livings as full-time professionals in RTS
leagues. In developing our integrated RTS player, we

mined information available on expert techniques and rules
of thumb (e.g. http://www.battle.net/war3/), as well as
expert commentary on championship games (e.g.
http://www.youtube.com/watch?v=IcPxu1RkeRU), and
used this to determine the required competencies of our
agent.
 General rules of thumb have been distilled by the expert
player community. Getting “behind on economy” almost
guarantees a loss at expert levels. Like any rule of thumb,
there are specific situations and strategies in which the rule
is violated. For example, the “Probe Stop” involves halting
economic expansion in favor of putting all available
income into military production, causing a temporary spike
in military strength. Managing the economy (collection and
consumption of resources) in order to maximize mass-
production of military and production units is a major
subtask of expert play.
 Human-developed unit micro-management techniques
contain a subgroup that is applicable to nearly all RTS
games. One of the basic micro-management techniques is
dancing. Dancing is a specific use of ranged units in which
a group of units attacks simultaneously, then “dances”
back during their “cooldown”, the unit’s recovery period
between attacks. This allows the ranged units to be as far
away from the opposing units as possible during their
cooldown period, without sacrificing offensive position.
 Techniques such as dancing are called micro-
management because they involve controlling the detailed
movements of individual units. In the absence of micro-
management, units respond to high-level directives (such
as attack) using very simple built-in behaviors. Micro-
management involves real-time decision-making on the
part of the player and is another major subtask of the RTS
player.
 Tactics entails unit deployment and grouping decisions.
Unlike micro-management, tactics involves coordinating
groups of units to perform specific tasks. One tactic,
commonly seen in the early game of Warcraft III
(http://www.battle.net/war3/), involves coordinating units
to block an enemy retreat, often using area effect attacks or
blocking terrain bottlenecks with units. Tactical decision
making, including a knowledge of common tactics and
counter-tactics, is a significant subtask for the expert RTS
player.
 In RTS games, the map is only visible in a limited radius
around friendly units. This requires active reconnaissance
to gather information about the location and activities of
enemy units. A common reconnaissance method early in
the game is to send a worker around the map to find the
enemy base. Base reconnaissance reveals the progress and
nature of the economic build-up (revealing information
about which strategies the enemy is likely following) and
the physical layout of the base (e.g. is the base highly
fortified against ground attacks). Reconnaissance is thus a
significant subtask for the expert RTS player.
 Finally, expert players develop and deploy high-level
strategies. Strategies coordinate the style of economic
buildup, the base layout, and the offensive and defensive

style. The knight’s rush is a strategy found in Warcraft II.
The knight is a heavy melee unit available in the middle of
the technology tree (the tree of dependencies between
different unit and building types). In general RTS terms, a
knight’s rush is a heavy attack with units in the middle of
the tech tree as soon as they are available. With this
strategy, the economy is expanded as much as possible
while researching the technology and constructing the
buildings necessary for knights, with little to no resource
spent on defensive units. This strategy leaves a player
vulnerable until the ability to create knights is obtained, as
early defense is traded for later offensive power.
 Human experts decide on a high-level strategy very
quickly at the beginning of the game, based on information
such as the map size and number of opponents. This initial
strategy selection determines the initial production order of
buildings and units. For example, a small map favors a
push for early military units, as attacks come earlier in the
game. However, players must often switch strategy based
on information gained through reconnaissance. Strategy
determination, execution and switching is the last major
subtask of the expert RTS player. The subtasks identified
in our analysis of human expert play inform the managers
of our integrated RTS agent.

Framework

The software framework of our agent consists of the ABL
reactive planning language connected to the Wargus RTS
engine.

ABL
ABL (A Behavior Language) is a reactive planning
language similar in flavor to belief-desire-intention
architectures such as PRS (Georgeff and Lansky 1987),
though an ABL program does not require a commitment to
a formal domain model. ABL serves as the glue for our

integrated agent. Different distinct competencies
in our agent, which can make use of distinct
problem solving techniques, communicate with
each other through ABL’s working memory, and
through ABL’s dynamic subgoaling mechanism.
 ABL, based on the Oz project believable agent
language Hap (Bates, Loyall and Reilly 1992),
adds significant features to the original Hap
semantics, including first-class support for meta-
behaviors (behaviors that manipulate the runtime
state of other behaviors) and for joint intentions
across teams of multiple agents (Mateas and
Stern 2002).
 Although ABL was originally designed to
support the creation of autonomous believable
characters, it has many features that work well in
the space of RTS AI. Playing an RTS game
requires the player to pay attention to many
facets of the game simultaneously, reacting
quickly and appropriately at multiple levels of
abstraction including strategy, tactics and unit

micro-management. Good RTS play requires a
combination of deliberative, planful activity and real-time
responsiveness to changing game conditions. ABL was
precisely designed to combine reactive, parallel goal
pursuit with long-term planfulness.

Wargus
Wargus is a clone of the game Warcraft II and its
expansion, Tides of Darkness, both of which were
developed by Blizzard Entertainment™. This clone is
rendered in the open source RTS game engine Stratagus
(Ponsen et al. 2005). The open source nature of Wargus
allows integration with ABL and access to any part of the
game state that Wargus itself has access to.
 Another beneficial quality of Wargus is that it has an
external AI scripting language, based on Lua, through
which new agents can be added and existing agents can be
modified. This scripting capability affords the creation and
importing of a range of AI scripts with which to test our
agent.

Agent Architecture
Our agent is composed of distinct managers, each of which
is responsible for performing one or more of the major
subtasks identified in our analysis of human expert play.
As seen in Figure 1, the agent consists of income,
production, tactics, recon, and strategy managers.
 The first competency we have focused on is strategy, as
strategic competence is required to play a complete game.
Several of the other managers have been implemented with
just enough functionality to provide an interface to the rest
of the managers comprising the agent. By factoring our
agent based on the study of expert play, we are able to
easily modify individual managers and study the effect of
increased or decreased competence of a specific manager
on the overall strength of the agent.

IM

PM

SM

TM

RM

Get worker

Build and Train
commands

Set income
ratio

Attack
base

Location of baseGet worker

Construction

Lumber Harvesting Townhall
Barracks Military Units

Look at
opponent

Opponent’s Base

Attack
Base

Construct
Farm

Train
Soldier

Request
Information

Gather
Wood

Figure 1 - This graph shows a small sample of the dependencies managers
have on one another. The blue boxes are managers with abbreviated names
(TM is tactics manager, RM is recon manager, etc). At the bottom of the
graph are game entities found in Wargus.

Strategy Manager. The strategy manager is responsible
for high level strategic decisions. The manager is
composed of modules, which consist of behaviors
implementing rules and associated ABL working memory
elements.
 The first task the strategy manager performs is to
determine the proper initial order in which to construct
buildings and units (the first 30 to 90 seconds of game
play). The InitialStrategy module utilizes the recon
manager to determine the distance between the agent’s and
opponent’s starting locations on the game map, using
thresholds to determine if the distance is small, medium, or
large. Currently we use manually determined thresholds to
make this determination, though there is certainly an
opportunity for adaptation here. For small distances, the
initial strategy involves constructing barracks and military
units before the construction of a second farm (to support
more workers); this allows the agent to defend against
early attacks, as well as potentially perform an early attack,
at the cost of an economy that grows slightly more slowly
at the beginning. For medium distances, the initial strategy
maximizes economic production; for separated enemies,
there is time to build a robust economy and a significant
military force before engaging in battles. This involves
creating new workers without pause during the early game,
and setting the default unit creation mix in the production
manager to one worker to one soldier (the production
manager will start creating soldiers when the preconditions
for soldier creation, namely the construction of a barracks,
have been fulfilled). Currently, for large distances,
InitialStrategy performs the same behavior as for medium
distances. This distinction between large and medium
distances will be useful when the recon manager is
sophisticated enough to determine suitable locations for the
construction of additional bases; for small and medium
distances, base attacks generally occur before there is time
to build additional bases.
 The next module, TierStrategy, is the highest priority
recurring task in the strategy manager. “Tier” refers to the
technology level achieved by the agent during economic
production; different types of units become available as
new building types are constructed (there are precondition
relationships between building types that force a player to
build up through the tiers). At each of the three tiers in
Wargus, TierStrategy responsibilities include maintaining a
unit control cap with regards to production capacity (i.e.
construct the correct amount of farms), building a
military/economic force superior to that of the opponent,
and attacking when the agent has a military unit advantage.
Our agent currently has a large amount of knowledge for
tier one strategy, a small amount for tier two, and no
knowledge for tier three. In future work, we will be
expanding strategic competence for tier three, though there
are no existing strong AI players we can test against for
tier three.
 TierStrategy starts making decisions after the initial
building order controlled by InitialStrategy is complete. A
primary responsibility for TierStrategy is determining

which buildings and units are to be produced at any point
in the game past the initial build order. For tier one, the
agent grows economic and military unit production
capacity as quickly as possible. To this end, the module
continuously trains workers until the agent controls at least
ten (unless InitialStrategy has primed the production
manager to produce soldiers early, in which case soldier
production is mixed in with worker production).
 After the initial economic buildup, TierStrategy begins
production of military capacity. Two barracks and a
blacksmith are built sequentially after eight workers are
available. After the first barracks has finished, the agent
trains one soldier at the barracks for every new worker
created. After all military production buildings are
finished, the agent builds two soldiers for every worker.
During all of this, TierStrategy monitors how many units
can be supported given the current number of farms,
ordering the construction of new farms to support
increasing unit numbers.
 At any time during tier one, three variations of the
human developed “probe stop” strategy (in which all
production shifts to military units) can occur. After twenty
workers are created, the agent has enough income to
continuously build grunts from both barracks while
upgrading their offensive and defensive capacity via the
blacksmith. At this point, only upgrades, soldiers, and
farms to support new soldiers are created. Additionally, if
the opponent has a lead of more than three military units, a
probe stop is performed. When the agent has a deficit of
more than two workers, the agent performs a reverse probe
stop; all military production is halted in favor of ramping
up resource gathering and production capacity.
 As the game balance of Wargus is skewed toward heavy
melee units, the tier two production strategy is to simply
build a stables (the building which enables the construction
of knights) and produce as many knights as possible.
 TierStrategy is also responsible for determining when to
attack, given the number of military units controlled by the
agent vs. the opponent. This decision is currently made via
empirically determined static thresholds: a 3 unit
advantage in favor of the agent for tier one, 5 for tier two,
and 8 for tier three.

Income Manager. The income manager is responsible for
the details of controlling workers who gather resources,
releasing workers for construction and repair tasks, and
maintaining a gold to wood income ratio set by the strategy
manager.
 The first action performed by the income manager is to
set the gold to wood income ratio given by the strategy
manager. After the ratio is set, the manager is given
workers, who have no assigned task, from the production
manager. The newly assigned workers are placed in a
resource list with regards to keeping the actual gold to
wood income ratio closest to that set by the strategy
manager.
 The final responsibilities are to release workers for
construction tasks (requested by the production manager)
and repair tasks (by either the production or tactics

manager) and to put workers on the appropriate resource
task if the strategy manager changes the income ratio.

Production Manager. The production manager is
responsible for constructing units and buildings. At the
heart of the production manager are modules that service
three priority queues: a unit production queue, a building
production queue, and a queue for repeated cycles of unit
training and building construction.
 Unit production pursues the training of the highest
priority unit in the unit queue, ensuring that there are
sufficient resources, and that the appropriate production
building is free (e.g. barracks for training soldiers).
Building production pursues the construction of the highest
priority building, appropriately locking construction
resources. This is necessary because simulation time passes
between when the decision is made to build and a worker
reaches the building location; without locking, resources
would be spent elsewhere during this delay, causing the
construction to fail.

Tactics Manager. The tactics manager takes care of unit
tasks pertaining to multi-unit military conflicts. The tactics
manager has three modules. The first assigns all military
units to a unit group. The tactics manager provides an
interface for high level control of the military unit group
for use by the strategy manager. All basic military unit
commands (attack, move, patrol, stand ground, etc) are
made available to the strategy manager. More abstract
commands, like attacking the opponent’s base, are also
made available. Keeping the military unit group on task is
the responsibility of the second module. The final module
removes slain units from the military unit group.

Recon Manager. As one of the managers that has just
enough functionality to properly interface with the other
managers, the recon manager uses aggregate unit
information (number of military and worker units per
player) and perfect information. The tactical and strategy
managers request aggregate information from the recon
manager. All academic and commercial RTS AIs currently
make use of perfect information. As we develop the recon
manager, we will remove the assumption of perfect
information so that the recon manager must manage units
in reconnaissance tasks.

Manager Interdependence

In this section we describe the relationship between the
managers, and how the individual manager competencies
are integrated to play a complete game. We demonstrate
this through thought experiments where we examine the
effects of removing individual managers.
 If the income manager was removed, the agent would
have no income and the production manager would be
limited to using only the initial set of resources.
Furthermore, there would be no method for the production
manager to acquire a worker for construction or repair
tasks. Under the default Wargus starting conditions, the

agent would only be able to build four workers (which
would sit idly by the town hall) and do nothing else.
 If the production manager was removed, the agent
would have no facilities to produce new units or buildings.
This would result in the agent only being able to use the
initial worker to either gather gold or lumber for the length
of the game.
 By removing the recon manager, the agent would have
no way to sense its opponents or its own units, resources,
and buildings, as well as have no knowledge of the map.
The agent would not be able to perform any game actions.
 With no tactics manager, the agent would not be able to
coordinate multiple units for attack or defense. All
economic and production tasks would proceed normally,
but the agent could never attack; it would keep all units at
its starting location, and engage in uncoordinated defensive
battles when opponents attack (using the Wargus built-in
default defense behaviors) until it is defeated. The best
outcome one could hope for is a draw, brought on by the
opponent running out of resources.
 The removal of the strategy manager would result in
agent capabilities similar to the removal of the production
manager. Due to the strategy manager making all of the
production and attack requests, the only actions the agent
could perform would be the initial worker being told to
gather resources by the income manager. The tactics
manager could be used without the strategy manager to
manage individual battles, but only given that initial battle
conditions are set at the start of the simulation.

Results

The above section describes how the discrete competencies
of the agent integrate to support the ability to play a
complete RTS game. In this section we provide empirical
results that the integrated agent performs well against two
benchmark scripted AI opponents: the soldier’s rush, and
the knight’s rush. Our agent outperforms the best reported
results against these scripts. A soldier’s rush involves
staying at technology tier one, building a large collection
of soldiers (weakest melee unit) and rushing the enemy
base, presumably before they have had time to build a
significant defensive force. The knight’s rush involves
building to technology tier two, building a number of
knights, and attacking the enemy. Each script was tested on
two maps. The first map was of a medium size (96 by 96
tiles) while the other was of a large size (128 by 128 tiles).
Both maps had clear land routes between our agent’s base
and that of the scripted opponent. Each map and opponent
combination was played 15 times.
 As seen in Table 1, our agent bests the soldiers’ rush
most of the time on both maps. From analysis of the
games, the lower win rate on the medium map was due to
having less time to prepare for the early and vicious attack
characteristic of the soldier’s rush. The large map afforded
the agent more time to build military capacity which
resulted in better defense from the rush.

 Medium Map Large Map Both Maps

Soldier Rush 73% 86% 80%

Knight’s Rush 60% 46% 53%

Table 1 – The percentage of games our agent won against
each scripted opponent on each map.

 By winning over half of the games played against the
knights’ rush, our agent has performed quite well in
comparison to other Wargus agents. The knight’s rush is
considered a “gold standard” of a difficult scripted
opponent. Other agents have defeated the knight’s rush
script, but have done so less frequently; our agent won
53% of the games against the knight’s rush, while the
highest reported win rate in the literature is 13% (Ponsen et
al. 2005). Ponsen, in fact, hypothesizes that the knight’s
rush is an optimal Wargus strategy, as an explanation for
why evolutionary learning plus dynamic scripting fairs
poorly against the knight’s rush. Expert human players, on
the other hand, consider the knight’s rush a fairly weak
strategy, that they would only employ against a player with
insufficient reconnaissance. If you know a player is
performing a knight’s rush, the counter-strategy is to
perform a soldiers rush; while the enemy is spending all
their economy on teching up to tier two, so they can
produce knights, they are not building defensive forces,
making them vulnerable to a soldier’s rush. This is in fact
what our strategy manager does, if it recognizes the enemy
as performing a knight’s rush.
 Many of the losses suffered by our agent were due to the
lack of sophistication of the tactics manager. Specifically,
the tactics manager fails to concentrate military units in an
area in either offensive or defensive situations. When many
parallel decisions are being made elsewhere in the agent,
small delays can be introduced in sending tactical
commands to individual units, causing units to trickle
towards engagements and be easily defeated. Future work
in the tactics manager will focus on explicit formation
management.

Conclusion

In this paper we have demonstrated an integrated agent
capable of playing a complete RTS game. In contrast to
other RTS agents in the literature, which have tended to
employ an individual component to address a single aspect
of the game (e.g. reinforcement learning for tactical
management of small battles) or an individual component
applied uniformly across the whole game (e.g. case-based
retrieval of actions), our RTS agent employs multiple
managers, where the needed managers were identified by a
knowledge-level analysis of human expert play; the
managers are integrated using the ABL reactive planner.
 As we continue to develop our agent, the integrated
modular architecture will allow us to strengthen individual
competencies, and experiment with different techniques
within different modules, while easily being able to test the
effect on the global behavior of the agent. For example, in
current work, we are integrating an HTN planner into the

strategy manager to construct build orders, and adding
behaviors to the tactics manager for formation
management and dancing.

References

Bates, J.; Loyall, A.B.; and Reilly, W.S. 1992 Integrating
Reactivity, Goals, and Emotion in a Broad Agent.
Proceedings of the Fourteenth Annual Conference of the
Cognitive Science Society, Bloomington, Indiana.
Buro, M. 2003. Real-time strategy games: A new AI
research challenge. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI) 2003,
pages 1534–1535. Morgan Kaufmann.
Chung, M.; Buro, M.; and Schaeffer, J. 2005. Monte Carlo
Planning in RTS Games, In Proceedings of the IEEE
Symposium on Computer Intelligence and Games,
Colchester, UK.
Georgeff, M.P. and Lansky, A.L. 1987. Reactive reasoning
and planning. In Proceedings of the Sixth National
Conference on Artificial Intelligence (AAAI-87), pages
677-682, Seattle, WA.
Guestrin, C.; Koller, D.; Gearhart, C.; and Kanodia, N.
2003. Generalizing plans to new environments in relational
MDPs. In International Joint Conference on Artificial
Intelligence (IJCAI-03).
Kovarsky, A. and Buro, M. 2006. A First Look at Build-
Order Optimization in Real-Time Strategy Games,
Proceedings of the GameOn Conference. 18-22.
Braunschweig, Germany.
Mateas, M. and Stern, A. 2002. A behavior language for
story-based believable agents. IEEE Intelligent Systems,
17(4), 39-47.
Mateas, M. and Stern, A. 2003. Integrating plot, character
and natural language processing in the interactive drama
Façade. In Proceedings of the Technologies for Interactive
Digital Storytelling and Entertainment (TIDSE),
Darmstadt, Germany.
Ontañón, S.; Mishra, K.; Sugandh, N.; and Ram, A. 2007.
Case-Based Planning and Execution for Real-Time
Strategy Games, Seventh International Conference on
Case-Based Reasoning.
Ponsen, M.J.V.; Muñoz-Avila, H.; Spronk, P.; and Aha,
D.W. 2005. Automatically Acquiring Domain Knowledge
For Adaptive Game AI Using Evolutionary Learning.
Proceedings of the Seventeenth Innovative Applications of
Artificial Intelligence Conference. AAAI Press.
Ponsen, M.J.V.; Muñoz-Avila, H.; Spronck, P.; and Aha,
D.W. 2006. Automatically Generating Game Tactics via
Evolutionary Learning. AI Magazine, Vol 27, pp. 75-84.
Tambe, M. 1997. Towards Flexible Teamwork. Journal of
Artificial Intelligence Research (7) 83-124.
Wintermute, S.; Xu, J.; and Laird, J.E. 2007. SORTS: A
Human-Level Approach to Real-Time Strategy AI.
Proceedings of the Third Artificial Intelligence and
Interactive Digital Entertainment Conference, Stanford,
California.

